Циклограммы командоаппарата и промышленного робота

Рис. 20.5

Рассмотрим работу пневмопривода перемещения руки манипулятора (рис.20.5). По сигналу от командоаппарата в правую полость цилиндра подается сжатый воздух, который действует на поршень с силой Fд3 = p * Sп, где р - давление воздуха, Sп - активная площадь поршня. Под действием этой силы поршень и рука 3 перемещаются влево с постоянным ускорением и с возрастающей скоростью V32 (рис.20.6а). Ограничение хода поршня может осуществляться либо жестким упором без демпфера, либо упором с демпфером.

Рис. 20.6

При остановке на упоре без демпфера, скорость звена 3 должна мгновенно уменьшится с некоторого конечного значения до нуля. При таком изменении скорости ускорение a32 стремится к бесконечности. Такая остановка звена называется жестким ударом. Она сопровождается большими динамическими нагрузками на звенья механизма. Так как реальный манипулятор представляет собой упруго-инерционную систему, то эти нагрузки вызовут отскок звена 3 от упора, а также колебания всего механизма. Схват будет совершать колебания относительно заданного конечного положения. Время затухания этого процесса D t (рис.20.6а) значительно снижает быстродействие ПР.
Уменьшить эти колебания или вообще исключить их можно, обеспечив безударный останов

V32n = 0, a32n = 0;

где V32n, a32n - относительная скорость и относительное ускорение звеньев в момент останова. Однако это осуществимо только в регулируемом приводе при контурном управлении. Кроме того при безударном останове в конце хода относительная скорость близка к нулю, поэтому время перемещения схвата в требуемое положение значительно возрастает. Компромиссным решением является останов с мягким ударом, при котором относительная скорость в конце хода V32n= 0, а ускорение ограничено некоторым допустимым значением a32n <= [a]. В механизмах с цикловым управлением режим движения с мягким ударом обеспечивается установкой упоров с демпферами, гасящими кинетическую энергию руки. Расчет демпфера ведется из условия ASn =0, которое обеспечивается равенством за цикл движения работы движущей силы AFд3 и работы силы сопротивления демпфера АFc (рис. 20.6б):

AFд3 = -АFc или Fд3 * (H32 – hд) = - Fc * hд.

В этом выражении неизвестны две величины Fc и hд, одной из них задаются, вторую – рассчитывают.

Уравновешивание манипуляторов.

В большинстве кинематических схем манипуляторов приводы восприниамают статические нагрузки от сил веса звеньев. Это требует значительного увеличения мощностей двигателей приводов и моментов тормозных устройств. Для борьбы с этим используют три метода:

  • Используют кинематические схемы манипуляторов, в которых силы веса звеньев воспринимаются подшипниками кинематических пар. На мощность приводов и тормозных устройств при таком решении силы веса оказывают влияние только через силы трения в парах. В качестве примера можно привести кинематическую схема робота SCARA (рис. 20.7). Недостатком этого метода являются большие осевые нагрузки в подшипниках.
Рис. 20.7
  • Уравновешивание звеньев манипулятора с помощью корректировки их массы. При этом центр масс звена с помощью корректирующих масс смещается в центр кинематической пары (рис. 20.8). Недостатком этого метода является значительное увеличение массы манипулятора и моментов инерции его звеньев.
Рис. 20.8
  • Уравновешивание сил веса звеньев манипулятора с помощью упругих разгружающих устройств – пружинных разгружателей или уравновешивателей. Эти устройства не позволяют обеспечить полную разгрузку приводов от действия сил веса на всем относительном перемещении звеньев. Поэтому конструкция этих устройств включает кулачковые или рычажные механизмы, которые согласуют упругую характеристику пружины с характеристикой уравновешиваемых сил веса звеньев. На рис. 20.9 показана схема примышленного робота в котором привод вертикального перемещения руки снабжен механизмом для силовой разгрузки, состоящим из пружины и кулачкового механизма с профилем выполненным по спирали Архимеда.
Рис. 20.9

· Точность манипуляторов ПР.

· Точность манипуляторов определяется погрешностями позиционирования характеристической точки схвата (точка М) и погрешностями угловой ориентации схвата. Погрешности позиционирования определяются технологическими отклонениями размеров звеньев манипулятора, зазорами в кинематических парах манипулятора и механизмов приводов, деформациями (упругими и температурными) звеньев, а также погрешностями системы управления и датчиков обратной связи. В паспортных данных манипуляторов указывается максимально допустимое отклонение центра схвата манипулятора точки М от ее номинального расположения на множестве возможных конфигураций механизма. В результате погрешностей точка М описывает в пространстве некоторый эллипсоид, который называется эллипсоидом отклонений (рис. 20.10).

Рис. 20.10

· Литература

    1. Силовой расчет, уравновешивание, проектирование механизмов и механика манипуляторов: Учебное пособие для студентов смешанной формы обучения / И.Н.Чернышева, А.К.Мусатов,Н.А.Глухов и др.; Под ред. А.К.Мусатова. – М.: Изд-во МГТУ, 1990. – 80с., ил.
    2. Механика промышленных роботов: Учеб. пособие для втузов: В 3-х кн. / под ред. К.В.Фролова, Е.И.Воробьева. – М.: Высш.шк., 1988.
    3. Р.Пол “Моделирование, планирование траекторий и управление движением робота – манипулятора” - М.: Наука, 1976.

Понравилась статья? Добавь ее в закладку (CTRL+D) и не забудь поделиться с друзьями:  



double arrow