double arrow

Средняя ошибка выборки


После завершения отбора необходимого числа единиц в выборку и регистрации предусмотренных программой наблюдения изучаемых признаков этих единиц, переходят к расчету обобщающих показателей. К ним относят среднюю величину изучаемого признака и долю единиц, обладающих каким-либо значением этого признака. Однако, если ГС произвести несколько выборок, определив при этом их обобщающие характеристики, то можно установить, что их значения будут различными, кроме того, они будут отличаться и от реального их значения в ГС, если такое определить с помощью сплошного наблюдения. Другими словами, обобщающие характеристики, рассчитанные по данным выборки, будут отличаться от их реальных значений в ГС, поэтому введем следующие условные обозначения (табл. 8).

Таблица 8. Условные обозначения

Показатель Совокупность
генеральная выборочная
Число единиц совокупности N n
Среднее значение
Доля единиц, обладающих каким-либо значением признака d
Доля единиц, не обладающих каким-либо значением признака 1-d 1-
Дисперсия

Разность между значением обобщающих характеристик выборочной и генеральной совокупностей называется ошибкой выборки, которая подразделяется на ошибку регистрации и ошибку репрезентативности. Первая возникает из-за неправильных или неточных сведений по причинам непонимания существа вопроса, невнимательно­сти регистратора при заполнении анкет, формуляров и т.п. Она доста­точно легко обнаруживается и устраняется. Вторая возни­кает из-за несоблюдения принципа слу­чайности отбора единиц в выборку. Ее сложнее обнаружить и устранить, она гораздо боль­ше первой и потому ее измерение является основной задачей выборочного наблюдения.




Для измерения ошибки выборки определяется ее средняя ошибка по формуле (39) для повторного отбора и по формуле (40) – для бесповторного:

= ;(39) = . (40)

Из формул (39) и (40) видно, что средняя ошибка меньше у бес­повторной выборки, что и обусловливает ее более широкое применение.







Сейчас читают про: