double arrow

Пространственная структура молекул

Пространственная структура молекул зависит от пространственной направленности перекрывания электронных облаков числом атомов в молекуле и числом электронных пар связей за счет неподеленных электронов. Существует несколько типов связи. Связь, образованная перекрыванием атомных орбиталей по линии, соединяющей ядра взаимодействующих атомов, называется σ-связью. Сигма-связь может возникать при перекрывании s-орбиталей, s и р-орбиталей, d-орбиталей, а также d и s-орбиталей, d и p-орбиталей и f-орбиталей друг с другом и другими орбиталями. Сигма-связь обычно охватывает два атома и не простирается за их пределы, поэтому является локализованной двухцентровой связью. Она имеет осевую симметрию, и оба атома могут вращаться вдоль линии связи, т.е. той воображаемой линии, которая проходит через ядра химически связанных атомов. Это исключает возможность образования пространственных изомеров.

После образования между двумя атомами σ-связи, для остальных электронных облаков той же формы и с тем же главным квантовым числом остается только возможность бокового перекрывания по обе стороны от линии связи, через которую в этом случае проходит одна узловая плоскость. Связь, образованная перекрыванием атомных орбиталей по обе стороны линии, соединяющей ядра атомов (боковые перекрывания), называется p-связью. Пи-связь может образовываться при перекрывании р и р-орбиталей, р и d-орбиталей, d и d-орбиталей, а также f и p-, f и f-орбиталей.

Связь, образованная перекрыванием d-орбиталей всеми четырьмя лепестками, называется δ-связью (дельта-связь). Соответственно s-элементы могут образовывать только σ-связи; р-элементы – σ и p-связи, d-элементы – δ, p и σ-связи, а f-элементы – δ-, p-, σ- и еще более сложные связи. В связи с меньшим перекрыванием атомных орбиталей прочность у p- и δ-связей ниже, чем у σ-связей.

При наложении p-связи на σ-связь образуется двойная связь, например в молекулах кислорода (О = О), этилена (СН2 = СН2), диоксида углерода (0 = С = 0). Хотя энергия p-связи меньше, чем энергия σ–связи, однако суммарная энергия двойной связи выше энергии одинарной связи, а длина двойной связи меньше длины одинарной связи.

При наложении двух p-связей на σ-связь возникает тройная связь, например в молекулах азота (N ≡ N) и ацетилена (СН ≡ СН). Энергия тройной связи выше, а длина связи меньше, чем энергии и длины простой и двойной связей. Число связей между атомами называется кратностью связи. Каждая кратная связь всегда содержит только одну σ-связь. Число σ-связей, которые образует центральный атом в сложных молекулах или ионах, определяет для него значение координационного числа. Например, в молекуле NH3 и ионе NH4+ для атома азота оно равно трем и четырем соответственно.

Образование σ-связей фиксирует пространственное положение атомов относительно друг друга, поэтому число σ-связей и углы между линиями связи, которые называют валентными, определяют пространственную геометрическую конфигурацию молекул и комплексных ионов, что находит отражение в соответствующих моделях.

Связи, образованные атомом за счет орбиталей с различным значением орбитального квантового числа, должны быть энергетически неравноценными, что, однако, не подтверждается экспериментом. Противоречие устраняется идеей гибридизации, предложенной Л. Полингом (1901). Гибридизациией называют образование одинаковых по энергии и форме орбиталей атома в результате сложения различных по энергии и форме орбиталей при возбуждении этого атома. При этом орбитали разной симметрии смешиваются и переходят в гибридные атомные орбитали одинаковой формы и одинаковой усредненной энергии, что обеспечивает равноценность образуемых ими связей.

Возможность гибридизации определяют три условия:

1) Небольшая разница в энергии исходных атомных орбиталей, с увеличением этой разницы уменьшается устойчивость их гибридного состояния и прочность образуемых ими связей.

2) Достаточная плотность электродных облаков, что определяется значением главного квантового числа.

3) Достаточная степень перекрывания атомных орбиталей с огрбиталями других атомов при образовании связей, что закрепляет гибридное состояние и делает его более устойчивым.

Число гибридных орбиталей равно числу исходных. При смешении s и р-орбиталей образуется две sp-гибридных орбитали, угол между осями которых равен 180 °.

¾®

Две sp-орбитали могут образовывать две s-связи (BeH2, ZnCl2). Еще две s-связи могут образоваться, если на двух p-орбиталях, не участвующих в гибридизации, находятся электроны (ацетилен C2H2). Молекулы, в которых осуществляется sp-гибридизация, имеют линейную геометрию.

При смешении s- и двух р-орбиталей образуется три sp2-гибридные орбитали, угол между осями которых равен 120°.

––®

Три sp2-орбитали могут образовывать три s-связи (BF3, AlCl3). Еще одна связь (s-связь) может образоваться, если на p-орбитали, не участвующей в гибридизации, находится электрон (этилен C2H4). Молекулы, в которых осуществляется sp2-гибридизация, имеют плоскую геометрию.

При смешении s и трех р-орбиталей – четыре sp3-гибридных орбитали, угол между осями которых равен 109°28'. Молекулы, в которых осуществляется sp3-гибридизация, имеют тетраэдрическую геометрию (CH4, NH3).

––®

Форма гибридных атомных орбиталей отличается от формы исходных. В гибридной атомной орбитали электронная плотность смещается в одну сторону от ядра, поэтому при взаимодействии ее с атомной орбиталью другого атома происходит максимальное перекрывание, которое приводит к повышению энергии связи. Это повышение энергии связи компенсирует энергию, требуемую на образование гибридной орбитали. В результате химические связи, образованные гибридными орбиталями прочнее, а полученная молекула – более устойчива.

Геометрическая конфигурация молекул полностью определяется типом гибридных орбиталей центрального атома только при условии, что все гибридные атомные орбитали участвуют в образовании связей. Если хотя бы на одной из них остается неподеленная электронная пара, то конфигурация, определяемая типом гибридизации, реализуется не полностью (табл. 2).

Линейной конфигурацией обладают молекулы, образованные или двумя атомами (независимо от типа гибридизации, например, КВr), или центральный атом которых обладает sp-гибридизацией (ZnCl2, BeF2). Угол между связями в данном случае составляет 1800.

Таблица 2.

Возможная геометрическая конфигурация

молекул при sp3-гибридизации

Число неподеленных пар Число σ-связей Геометрическая конфигурация Примеры
    Тетраэдр СН4
    Тригональная пирамида 3
    Угловая Н2О
    Линейная КВr

В случае, когда центральный атом имеет два неспаренных р-электрона, то происходит sp2- или dp2- гибридизация. При условии, что все гибридные атомные орбитали участвуют в образовании связи конфигурация молекулы – плоская тригональная, а угол между атомами 1200 (BCl3, AlF3). Если одна гибридная орбиталь не участвует в образовании связи (H2S, H2O), то конфигурация молекулы не меняется, а угол между связями уменьшается в H2S до 920, а в H2O до 1050, что связано с отталкиванием неподеленной пары центрального атома (серы или кислорода) от двух гибридных орбиталей, перекрытых s-орбиталями водорода.

При sp3-гибридизации участие четырех гибридных атомных орбиталей в связи приводит к образованию молекулы с конфигурацией тетраэдра и углом между связями – 1090 28¢ (СН4, CCl4, SiН4). Если в образовании связи одна гибридная орбиталь участия не принимает, то образуется молекула в виде тригональной пирамиды с углом между связями 1080 (NН3).

Более сложные виды гибридизации приводят к образованию более сложной пространственной конфигурации молекул. Например, у серы возможна sp3d2-гибридизация, которая приводит к октаэдрической конфигурации молекул.

Таким образом, пространственная структура молекул зависит от типа гибридизации центрального атома и числа неподеленных пар. Образование p-связей стабилизирует состояние молекулы.


Понравилась статья? Добавь ее в закладку (CTRL+D) и не забудь поделиться с друзьями:  



Сейчас читают про: