Метод молекулярных орбиталей

Метод МО является более совершенным методом описания строения молекул. Если метод ВС позволяет судить о направленности строения молекул, определяет форму молекулы или иона, то метод МО дает более полную информацию о строении, указывает на прочность связи, возможность существования молекулы, магнитные свойства вещества.

В основе этого метода лежит представление о том, что все электроны данной молекулы или иона (как и в атоме) распределяются по соответствующим молекулярным орбиталям. По аналогии с атомными s-, p-, d-, f- орбиталями, молекулярные орбитали обозначаются греческими буквами s-, p-, d-, j-, ….

Описать молекулу по теории МО – это значит определить ее орбитали, их энергию и выяснить характер распределения электронов по орбиталям в порядке возрастания их энергии. Образование молекулярных орбиталей можно представить как результат сложения и вычитания взаимодействующих атомных орбиталей. Метод МО основан на следующих правилах:

1. При сближении атомов до расстояния химических связей, из атомных орбиталей (АО) образуются молекулярные, число полученных молекулярных орбиталей равно числу исходных атомных.

2. Перекрываются атомные орбитали, близкие по энергии. В результате перекрывания двух атомных орбиталей образуются две молекулярные. Одна из них имеет меньшую энергию по сравнению с исходными атомными и называется связывающей, а вторая молекулярная орбиталь обладает большей энергией, чем исходные атомные орбитали, и называется разрыхляющей.

3. При перекрывании атомных орбиталей возможно образование и s -связи (перекрывание по оси химической связи), и p- связи (перекрывание по обе стороны от оси химической связи).

5. На одной молекулярной орбитали (как, впрочем, и атомной) возможно нахождение не более двух электронов (принцип Паули).

6. Электроны занимают молекулярную орбиталь с наименьшей энергией (принцип наименьшей энергии).

7. Заполнение орбиталей вырожденных (с одинаковой энергией) происходит последовательно по одному электрону на каждую из них.

 
 


Схема образования и форма данных молекулярных орбиталей с учётом изложенного выше представлена на рис.3.7:

В силу осевой симметрии обеих молекулярных орбиталей относительно линии, связывающей ядра атомов, это σ-орбитали. В общем случае обозначение МО, кроме типа связи (σ-, π-, δ-) содержит также указание на их характер (связывающие, разрыхляющие, несвязывающие) и вид исходных АО: например, и или σs и (звёздочка указывает на возбуждённое состояние).

 
 


Результаты линейной комбинации исходных АО в методе МО нагляднее демонстрировать в виде энергетической диаграммы. Для рассмотренного выше случая энергетическая диаграмма представлена на рис.3.6.

Заполнение молекулярных орбиталей электронами подчиняется тем же основным принципам, что и атомных орбиталей. В соответствии с этим энергетическая диаграмма молекулы водорода будет выглядеть так, как представлено на рис.3.7.:

 
 


В нормальном состоянии молекулы водорода оба её электрона согласно принципу минимума энергии занимают наиболее низкую орбиталь и согласно принципу Паули имеют противоположные спины. Таким образом, ёмкость МО так же, как и АО составляет два электрона. Суммарный спин при этом равен нулю, т.е. молекула должна быть диамагнитной, что и наблюдается в действительности.

Изучение молекулярных спектров двуядерных молекул образованных элементами начала 2-ого периода вплоть до азота N2 дало следующий порядок следования МО:

σ1s < σ1s* < σ2s < σ2s* < πy = πz < σx < πy* = πz* < σx* (11)

 
 


Другим характерным примером, который обычно используют для того, чтобы продемонстрировать дополнительные возможности метода МО, недоступные МВС, является описание строения молекулярного кислорода О2. Так, например, при совпадении данных обоих методов о двукратности связи в молекуле кислорода метод ВС не позволяет предсказывать магнитные свойства, согласно ему данная молекула диамагнитна, т.к. все электроны спарены:

В действительности молекулярный кислород парамагнитен. Метод МО позволяет объяснить это, как видно из рис. 14, наличием двух неспаренных электронов на π-разрыхляющих орбиталях (πy* и πz*).

 
 

Порядок связи (кратность связи) оценивается полуразностью числа связывающих и разрыхляющих электронов:

е - (связ.) – е - (разр.)

Порядок связи = ———————;

где:

е - (связ.) - число связывающих электронов;

е - (разр.) – число разрыхляющих электронов.

Характер распределения электронов по молекулярным орбиталям позволяет объяснить магнитные свойства молекул. По магнитным свойствам различают парамагнитные (обладают собственным магнитным полем) и диамагнитные вещества (не обладают собственным магнитным полем). Парамагнитными считаются те молекулы или ионы, у которых имеются непарные электроны на молекулярных орбиталях (МО), у диамагнитных – все электроны парные.

Как определить, связи какого типа образуют атомы элементов в определенном веществе? Рассмотрим примеры.

1. Хлорид цезия CsCl. Атом цезия (IА группа) большой, с низким значением электроотрицательности, легко отдает электрон, а атом хлора (VIIА группа) небольшой с большим значением ЭО легко его принимает, следовательно, связь в хлориде цезия ионная (типичный металл с типичным неметаллом).

2. Гидрид азота (аммиак) NH3 Атомы азота (VА группа) и водорода (IА группа) отличаются по размерам – оба небольшие по размеру (неметаллы). По склонности принимать электроны они отличаются, связь в молекуле NH3 ковалентная полярная.

3. Азот N2. Простое вещество. Связываемые атомы одинаковые и при этом небольшие, следовательно, связь в молекуле азота ковалентная неполярная.

4. Кальций Са. Простое вещество. Связываемые атомы одинаковые и довольно большие, следовательно связь в кристалле кальция металлическая.

КОНТРОЛЬНЫЕ ЗАДАНИЯ

61. Исходя из теории ковалентной связи, изобразите в виде валентных схем строение молекул: HCl, H2O, NH3.

62. Почему энергия двойной связи С = С (613,2 кДж) не равна удвоенному значению энергии одинарной связи С - С (348,6 кДж)?

63. Как изменяется полярность связи и прочность молекул в ряду HF, HCl, HBr, HI?

64. Какие химические связи имеются в ионах [NH4]+, [BF4]-?

65. Какую валентность, обусловленную не спаренными электронами (спин-валентность), может проявлять фосфор в нормальном и возбужденном состояниях?

66. Что такое гибридизация валентных орбиталей? Какое строение имеют молекулы типа АВn если связь в них образуется за счет sp-, sp 2 -, sp 3 – гибридизации орбиталей атома А?

67. Как метод молекулярных орбиталей (МО) описывает строение двухатомных гомоядерных молекул элементов, второго периода?

68. Пользуясь таблицей относительных электроотрицательностей, вычислить их разность для связей Н–О и О–Rb в гидроксиде RbОН и определить: а) какая из связей в молекуле характеризуется большей степенью ионности; б) каков характер диссоциации этих молекул в водном растворе.

69. Как изменяется прочность связи в ряду СO2–SiO2–GeO2–SnO2? Указать причины этих изменений.

70. Дипольный момент молекулы HCN равен 0,97×10-29 Кл×м. Определите дли­ну диполя молекулы HCN.

71. Какой вид гибри­дизации электронных облаков имеет место в атоме кремния при образовании молекулы SiF4? Какова пространственная струк­тура этой молекулы?

72. Опишите с помощью метода молекулярных орбиталей молекулу Н20.

73. Определите тип гибридизации орбиталей центрального атома в частице Н3О+.Назовите и изобразите геометрическую форму этой частицы.

74. Определите тип гибридизации орбиталей центрального атома в частице NO2.Назовите и изобразите геометрическую форму этой частицы.

75. Укажите тип гибридизации орбиталей бора в молекуле BBr3.

76. Какие виды химической связи имеются в молекуле NH4I?

77. Сера образует химические связи с калием, водородом, бромом и углеродом. Какие из связей наиболее и наименее полярны? Укажите, в сторону какого атома происходит смещение электронного облака связи.

78. Описать с позиции метода МО молекулу ВеН2: определить кратность связи и магнитные свойства молекулы.

79. Описать с позиции метода МО молекулу СН4: определить кратность связи и магнитные свойства молекулы.

80. Определите тип гибридизации и геометрическую форму комплексного иона [MoCl4]2-

81. Определите тип гибридизации и геометрическую форму комплексного иона [ZnCl4]2-

82. С помощью метода валентных связей (ВС) опишите пространственное строение молекулы CO2.

83. Определите тип гибридизации и геометрическую форму комплексного иона [Cd(H2O)4]2+

84. С помощью метода валентных связей (ВС) опишите пространственное строение молекулы (NН4)+.

85. Определите тип гибридизации и геометрическую форму комплексного иона [Ni(OH)4]2-

86. С помощью метода валентных связей (ВС) опишите пространственное строение молекулы PF3.

87. Определите тип гибридизации и геометрическую форму комплексного иона [Co(NH3)4]3+.

88. С помощью метода валентных связей (ВС) опишите пространственное строение молекулы SiF4.

89. Определите тип гибридизации и геометрическую форму комплексного иона [Cr(H2O)4]3+

90. Определите тип гибридизации и геометрическую форму комплексного иона [CuCl4]2-


Понравилась статья? Добавь ее в закладку (CTRL+D) и не забудь поделиться с друзьями:  



double arrow
Сейчас читают про: