double arrow

Обобщенный алгоритм построения математической модели


Процедуру построения математической модели реальной системы, процесса или явления можно представить в виде алгоритма. Блок-схема, иллюстрирующая алгоритм построения математической модели, приведена на рис. 4.2.

Рис.4.2. Алгоритм построения модели системы

Основные этапы построения математической модели.

1. Выделение системы из внешней среды. Выделение связей с внешней средой, разбиение множества связей на входные и выходные параметры. Наблюдение за системой, накопление информации, достаточной для выдвижения гипотез о структуре системы и ее функционировании.

2. Выбор аппарата формализации осуществляется исследователем и зависит от многих факторов, в частности - от целей моделирования, имеющейся информации, полученных экспериментальных данных.

3. Построение внешнего описания сводится к поиску области определения (в пространстве входных воздействий) и области значений (в пространстве выхода), размерность которых была определена на этапе 1, и определении соответствия между входными и выходными параметрами.

4,6. Если проверка адекватности показывает, что построенная модель не удовлетворяет предъявляемым к ней требованиям и причиной этого является более сложный характер поведения системы, то производится выбор нового метода математического описания.




5. В случае удачного построенного внешнего описания производится переход к внутреннему описанию, при этом размерность пространства состояний системы (то есть размерность вектора ) должна быть минимальной.

7. Определение (идентификация) качественных и количественных характеристик параметров, определяющих функционирование системы.

Среди представленных этапов построения математической модели методы идентификации параметров наиболее хорошо разработаны. При их использовании предполагается, что структура системы известна, а неизвестны только значения параметров. Задача параметрической идентификации в этом случае сводится к поиску значений параметров, обеспечивающих минимизацию некоторой функции ошибки. Особое значение на всех этапах построения математической модели является проверка адекватности, непротиворечивости модели и ее достаточности для реализации целей исследования.

Если построенная модель недостаточно полно отражает свойства моделируемой системы, то никакое применение самых современных средств и методов исследования не может дать удовлетворительных результатов. Таково неизбежное свойство использования математической модели. Все получаемые при ее исследовании результаты отражают свойства собственно модели, а не исходной системы, для исследования которой модель была разработана. После того, как модель построена, она начинает «жить своей собственной жизнью».







Сейчас читают про: