Ультразвук: способы получения и особенности распространения

ИСПОЛЬЗОВАНИЕ ЗВУКА В МЕДИЦИНЕ.

ПОНЯТИЕ ПРО АУДИОМЕТРИЮ.

Аудиометрия – комплекс методов измерения остроты слуха путём анализа восприятия человеком стандартных по частоте и интенсивности звуков.

Наиболее часто проводиться с помощью прибора аудиометра. Основной частью аудиометра является генератор гармонических колебаний – электронный прибор, который производит электрические колебания звуковой частоты (от 16-20000 Гц). На приборе есть регуляторы частоты и амплитуды колебаний.

В динамике электрические колебания преобразуются в механические (частота их будет такой же, как у электрических колебаний, а интенсивность волны будет зависеть от амплитуды электрических колебаний) и подаются через наушники к пациенту.

Врач задаёт определённую частоту колебаний и, плавно изменяет на этой частоте интенсивность звуковой волны, начиная с минимальной. Пациент должен подать знак, когда звуковые колебания станут слышимыми. Так определяется порог слышимости для данной частоты.

Те же действия выполняются врачом и пациентом и на других частотах. После этого – строят аудиограмму – кривую, отражающую пороги слышимости на различных частотах и сравнивают её с нормальной аудиограммой – результатом статистического исследования остроты слуха выборки здоровых людей.

Модификации методики позволяют выявить, в каком отделе слухового анализатора возникли нарушения (барабанная перепонка, нарушение подвижности слуховых кусточек среднего уха, рецепторы в слуховой улитке внутреннего уха, слуховой нерв или кора больших полушарий мозга) и назначить адекватное лечение.

Аудиометрию проводят также другими способами (исследование с помощью камертонов, шёпотной речью и т.д.)

Другие звуковые методы в медицине – аускультация, перкуссия, електрофонокардиография, где звук – является источником информации о состоянии и работе внутренних органов.

Ультразвук – упругая механическая продольная волна, частота которой превышает 20000 Гц. В медицине применяется УЗ частотой 1-1,5 МГц.

Ультразвуковая волна вследствие высокой её частоты распространяется в виде лучей (из-за малой длины УЗ-волны можно пренебречь её волновыми свойствами). Такие лучи можно сфокусировать с помощью специальных акустических линз и достигнуть, таким образом, большой интенсивности УЗ-волны. Кроме того, поскольку интенсивность волны пропорциональна квадрату частоты и амплитуды колебаний, то высокая частота УЗ-волны даже при малых её амплитудах предопределяет возможность получения УЗ-волн большой интенсивности.

Способы получения ультразвука:

1. магнитострикционный (получают ультразвук до 200кГц). Магнитострикция – это изменение формы и объёма ферромагнетика (железо, его сплавы с никелем) при помещении его в переменное магнитное поле. Переменное магнитное поле – это поле, вектор магнитной индукции которого изменяется во времени по гармоническому закону, т.е. изменение указанного параметра характеризуется определённой частотой. Это поле действует как вынуждающая сила, заставляющая стержень из железа сжиматься и растягиваться в зависимости от изменения величины магнитной индукции во времени. Частота сжатий и растяжений будет определяться частотой переменного магнитного поля. При этом в воздухе у концов стержня возникают деформации сжатия, которые распространяются в виде УЗ – волн.

Увеличения амплитуды УЗ-волн добиваются путём подбора такой частоты переменного магнитного поля, при которой наблюдается резонанс между собственными и вынужденными колебаниями стержня.

2. обратный пьезоэлектрический эффект (получают ультразвук более 200кГц). Пьезоэлектрики – вещества кристаллического строения, имеющие пьезоэлектрическую ось, то есть направление, в котором они легко деформируются (кварц, сегнетова соль, титанат бария и др.) Когда такие вещества помещают в переменное электрическое поле (по гармоническому закону колеблется напряжённость электрического поля), пьезоэлектрики начинают сжиматься и растягиваться вдоль пьезоэлектрической оси с частотой переменного электрического поля. При этом вокруг кристалла возникают механические возмущения – деформации сжатия и разряжения, которые распространяются в виде УЗ-волн. В достижении нужной амплитуды играют роль резонансные явления.

Эффект назван обратным, поскольку исторически раньше был открыт прямой пьезоэлектрический эффект – явление возникновения переменного электрического поля при деформации пьезоэлектриков.

Наличие прямого и обратного пьезоэлектрического эффекта очень важно для работы УЗ- диагностических приборов. Для того чтобы направить УЗ-волну на тело пациента, необходимо получить её, что делают с помощью обратного пьезоэлектрического эффекта. Для того чтобы зарегистрировать и визуализировать отражённую УЗ-волну, необходимо её превратить в электрическое поле, чего достигают с помощью прямого пьезоэлектрического эффекта.

Особенности распространения УЗ-волн:

1). В однородной среде. При прохождении УЗ-волны интенсивностью I через слой вещества шириной её интенсивность уменьшается и становится равной , где - начальная интенсивность УЗ-волны; - интенсивность волны после прохождения через слой вещества, - ширина слоя вещества, - коэффициент угасания волны.

Угасание УЗ-волны вызвано двумя процессами: рассеянием энергии в тканях (связано с клеточной неоднородностью органов) и её поглощением (связано с макромолекулярной структурой тканей). Значение коэффициента угасания – важный диагностический признак. Так, печень имеет малый коэффициент угасания УЗ-волн вследствие малого коэффициента рассеяния. При циррозе эта величина резко возрастает.

Поглощение тканями УЗ-волн – основа диагностики состояния внутренних органов по принципу трансмиссии – анализа интенсивности волны, прошедшей через тело пациента, и применения УЗ в терапии и хирургии.

2). На границе двух сред. При попадании УЗ-волны интенсивностью на границу раздела сред происходит отражение волны и поглощение волны.

Часть энергии, которая будет заключена в отражённой волне, зависит от соотношения акустических сопротивлений сред. Так на границе тело пациента- воздух отражается почти 100% энергии. Поэтому, чтобы УЗ-волна попала в тело пациента применяют специальные гели (цель - уменьшить перепад акустического сопротивления сред).

Отражение УЗ волны от неоднородностей и границ внутренних органов – основа диагностики их состояния по принципу эхолокации – анализа интенсивности отражённой УЗ - волны. УЗ – волна, направленная на тело пациента, называется зондирующим сигналом, а отражённая УЗ-волна – эхосигналом.

Отражение УЗ-волн также зависит от размера отражающих структур:

- если размер отражающих структур сопоставим с длинной УЗ-волны, то будет происходить дифракция волн, т.е. огибание волной структуры с последующим рассеянием энергии в тканях и формированием УЗ-тени. Это ограничивает разрешающую способность УЗ-диагностики;

- если размер отражающих структур больше длины УЗ-волны, то последняя будет отражаться, причём интенсивность эхосигнала будет зависеть от направления зондирующего сигнала, формы и размера отражающих структур. Существуют так называемые зеркальные структуры, амплитуда эхосигналов от которых имеет самые большие значения (кровеносные сосуды, полости, границы органов и тканей).

В целом, однако, интенсивность эхосигналов очень невелика, что требует для их регистрации очень чувствительной аппаратуры, но, с другой стороны, определяет проникновение УЗ-волн в более глубоколежащие внутренние структуры и способствует их визуализации.


Понравилась статья? Добавь ее в закладку (CTRL+D) и не забудь поделиться с друзьями:  



double arrow
Сейчас читают про: