Акустические течения и кавитация

Выделение теплоты и химические реакции

Поглощение ультразвука веществом сопровождается переходом механической энергии во внутреннюю энергию вещества, что ведет к его нагреванию. Наиболее интенсивное нагревание происходит в областях, примыкающих к границам раздела сред, когда коэффициент отражения близок к единице (100 %). Это связано с тем, что в результате отражения интенсивность волны вблизи границы увеличивается и соответственно возрастает количество поглощенной энергии. В этом можно убедиться экспериментально. Надо приложить к влажной руке излучатель УЗ. Вскоре на противоположной стороне ладони возникает ощущение (похожее на боль от ожога), вызванное УЗ, отраженным от границы «кожа-воздух».

Ткани со сложной структурой (легкие) более чувствительны к нагреванию ультразвуком, чем однородные ткани (печень). Сравнительно много тепла выделяется на границе мягких тканей и кости.

Локальный нагрев тканей на доли градусов способствует жизнедеятельности биологических объектов, повышает интенсивность процессов обмена. Однако длительное воздействие может привести к перегреву.

 

В некоторых случаях используют сфокусированный ультразвук для локального воздействия на отдельные структуры организма. Такое воздействие позволяет добиться контролируемой гипертермии, т.е. нагрева до 41-44 °С без перегрева соседних тканей.

Повышение температуры и большие перепады давления, которыми сопровождается прохождение ультразвука, могут приводить к образованию ионов и радикалов, способных вступать во взаимодействие с молекулами. При этом могут протекать такие химические реакции, которые в обычных условиях неосуществимы. Химическое действие УЗ проявляется, в частности, в расщеплении молекулы воды на радикалы Н+ и ОН- с последующим образованием перекиси водорода Н2О2.

Ультразвуковые волны большой интенсивности сопровождаются рядом специфических эффектов. Так, распространению ультразвуковых волн в газах и в жидкостях сопутствует движение среды, которое называют акустическим течением (рис. 5.5, а). На частотах диапазона УСЧ в ультразвуковом поле с интенсивностью в несколько Вт/см2 может возникнуть фонтанирование жидкости (рис. 5.5, б) и распыление ее с образованием весьма мелкодисперсного тумана. Эта особенность распространения УЗ используется в ультразвуковых ингаляторах.

К числу важных явлений, возникающих при распространении интенсивного ультразвука в жидкостях, относится акустическая кавитация - рост в ультразвуковом поле пузырьков из имеющихся

Рис. 5.5. а) акустическое течение, возникающее при распространении ультразвука частоты 5 Мгц в бензоле; б) фонтан жидкости, образующийся при падении ультразвукового пучка изнутри жидкости на её поверхность (частота ультразвука 1,5 МГц, интенсивность 15 Вт/см2)

субмикроскопических зародышей газа или пара в жидкостях до размеров в доли мм, которые начинают пульсировать с частотой УЗ и захлопываются в положительной фазе давления. При схлопывании пузырьков газа возникают большие локальные давления порядка тысяч атмосфер, образуются сферические ударные волны. Такое интенсивное механическое воздействие на частицы, содержащиеся в жидкости, может приводить к разнообразным эффектам, в том числе и разрушающим, даже без влияния теплового действия ультразвука. Механические эффекты особенно значительны при действии фокусированного ультразвука.

 

Еще одним следствием схлопывания кавитационных пузырьков является сильный разогрев их содержимого (до температуры порядка 10 000 °С), сопровождающийся ионизацией и диссоциацией молекул.

Явление кавитации сопровождается эрозией рабочих поверхностей излучателей, повреждением клеток и т.п. Однако это явление приводит и к ряду полезных эффектов. Так, например, в области кавитации происходит усиленное перемешивание вещества, что используется для приготовления эмульсий.


Понравилась статья? Добавь ее в закладку (CTRL+D) и не забудь поделиться с друзьями:  



double arrow
Сейчас читают про: