Обозначим
некоторое приближение к корню системы уравнений
. Пусть малое
. Вблизи
каждое уравнение системы можно линеаризовать следующим образом:
, 1 ≤ k ≤ n. (2)
Это можно интерпретировать как первые два члена разложения функции в ряд Тейлора вблизи
. В соответствии с (1), приравнивая (2) к нулю, получим:
, 1 ≤ k ≤ n. (3)
Мы получили систему линейных уравнений, неизвестными в которой выступают величины
. Решив ее, например, методом Гаусса, мы получим некое новое приближение к
, т.е.
. Выражение (3) можно представить как обобщение на систему уравнений итерационного метода Ньютона, рассмотренного в предыдущей главе:
, (4)
где в данном случае
– матрица Якоби, которая считается для каждого (s) приближения.
Критерием окончания итерационного процесса является условие
(Можем принять под
как норму
, так и
). Достоинством метода является высокая скорость сходимости. Сходимость метода зависит от выбора начального приближения: если
, то итерации сходятся к корню. Недостатком метода является вычислительная сложность: на каждой итерации требуется находить матрицу частных производных и решать систему линейных уравнений. Кроме того, если аналитический вид частных производных неизвестен, их надо считать численными методами.
Блок-схема метода Ньютона для решения систем нелинейных уравнений.

Так как метод Ньютона отличается высокой скоростью сходимости при выполнении условий сходимости, на практике критерием работоспособности метода является число итераций: если оно оказывается большим (для большинства задач >100), то начальное приближение выбрано плохо.
Частным случаем решения (4) методом Ньютона системы из двух нелинейных уравнений

являются следующие легко программируемые формулы итерационного процесса:
, где
,
, 






