Вопрос 2. Коэффициент Пуассона.При всем многообразии случаев произвольную деформацию тела можно свести к двум элементарным деформациям — растяжению (сжатию) и сдвигу

Коэффициент Пуассона. При всем многообразии случаев произвольную деформацию тела можно свести к двум элементарным деформациям — растяжению (сжатию) и сдвигу. При растяжении резинового шнура его поперечный размер d уменьшается до величины d1. Такое поперечное сжатие характеризуется параметром e^=(d1–d)/d=Dd/d. Продольный размер изменяется на D l и характеризуется величиной e=(l1–l)/ l=Dl/l. Опытным путем установлено, что отношение e^ к e приблизительно одинаково для разных деформаций одного и того же материала. Поэтому в теории упругости материал характеризуется коэффициентом Пуассона:

m=–(e^/e)

Подсчитаем численное значение коэффициента Пуассона. Чтобы ответить на этот вопрос, подсчитаем изменение объема резинового шнура:

V= l d2, V1= l1d12=l(1+e)d2(1+e^)2= [раскроем скобки и пренебрежём e^2, 2ee^, ee^2]»V(1+e+2e^)

DV/V=(V1–V)/V»e+2e^=e(1–2m).

Коэфф. всестороннего сжатия (возникает в условиях одинакового давления на все поверхности тела)

DV/V= –p/K (p – внешнее давление)

К=Е / 3(1–2 m)

при s1=s2=s3=s: DV/V = (3s /E)* (1–2m).

Законы Гука. В ряде практически важных случаев напряжения определяются только деформациями. Такие тела называются абсолютно упругими, или упругими. Замечательным свойством таких тел является способность полностью восстанавливать свою форму после снятия внешних усилий, прикладываемых к телу. Рассмотрим, например, растяжение (или сжатие) стержня под действием силы F, приложенной перпендикулярно к торцевой грани с площадью сечения S. При последовательном возрастании нагрузки вначале деформации развиваются равномерно по длине стержня и растут пропорционально нагрузке: e=(l1–l)/ l=F/SE=s/E. Величина s =F/S называется нормальным напряжением в торцевом сечении стержня. Пропорциональность деформаций e соответствующим напряжениям выражает закон Гука. Е – модуль Юнга. Закон Гука окончательно записывают в виде e=s/Е.

Опыт показывает, что этот закон выполняется лишь в определенном интервале напряжений. При некотором напряжении появляется заметное остаточное удлинение. Это напряжение s называется пределом упругости. Закон Гука выполняется только в части области упругости — области пропорциональности. При возрастании нагрузки наблюдается явление текучести, т.е. рост удлинения образца при постоянной нагрузке, называемой пределом текучести. Отметим, что течение материала происходит равномерно по всей длине стержня. За пределами области текучести дальнейшее удлинение стержня сопровождается увеличением s. Однако деформации будут распределены уже неодинаково по длине стержня — в некотором месте можно заметить образование шейки. При напряжении sM, называемом пределом прочности, в этом ослабленном сечении происходит разрыв. Аналогичными обладают и деформации сдвига. В области пропорциональности связь между деформацией и касательным напряжением задаётся соотношением: g=F/(GS)=st/G, где st=F/S – касательное напряжение, а G – модуль сдвига.

 
 

Установим зависимость G от Е. Обратим внимание на то, что квадратная грань ABCD параллелепипеда (рис. 1.9), находящегося внутри рассматриваемого кубика, превращается при деформации в ромбическую грань A’B’C’D’. Совершенно ясно, что параллелепипед испытывает сдвиговую деформацию, а его объем при этом практически не изменяется. Величину угла сдвига a можно легко связать с деформацией удлинения e=D l/l и коэффициентом Пуассона m=–e^/e. Из треугольника A'OD’ следует, что:


Поскольку b <<1, то

В последней формуле учтено, что em << 1. Сила F, растягивающая кубик (рис. 1.10), создает нормальное напряжение s=F/ l 2. Это напряжение передается на грани AB и BC параллелепипеда, однако силы, действующие на каждую из граней, имеют не только нормальную к грани, но и направленную вдоль грани составляющую Ft. Касательное напряжение оказывается при этом равным: (1.24)

Поскольку деформации e в формуле (1.23) пропорциональны напряжениям, а s=2st, то: a=2(1+m)st/E. Сравнивая последнее равенство с соотношением g=F/(GS)=st/G и учитывая, что g=tga»a, получаем то, что искали: G = E /2(1+m).

Модуль Юнга, коэффициент Пуассона. Модуль сдвига. Энергия деформированного тела.

Для стержней: s =E e, где s - напряжение на торце стержня sºF/S, где F – продольная сила действующая на торец стержня, S – площадь поперечного сечения стержня E – модуль Юнга – характеристика материала из которого сделано тело. eºDl/l0, где Dl изменение длины стержня, а l0 - начальная длина стержня.

Коэфф. Пуассона μ ≡ - (Δd/d)/(Δl/l) = - (λyx)= - (λzx) (при растяжении или сжатии вдоль оси x)

μ max=1/2

Сдвиг: τ=Gγ, где τ-касательное напряжение на поверхности бруска τºF/S где F – касательная сила действующая на поверхность пластины, S – площадь этой поверхности, γ – малый угол наклона боковой грани бруска, а G – модуль сдвига, характеризующий упругие свойства материала.

Энергия деформированного стержня W=kx2/2.


Понравилась статья? Добавь ее в закладку (CTRL+D) и не забудь поделиться с друзьями:  



double arrow
Сейчас читают про: