Поколения ЭВМ

Ранее отмечалось, что ближайшими прототипами современной ЭВМ можно считать машины "ЭДВАК" и "ЭДСАК", построенные в Англии и США в 1949-1950 годах. С начала 50-х годов началось массовое производство ЭВМ различных типов, которые сейчас принято относить к ЭВМ первого поколения. Следует иметь в виду, что поколения ЭВМ не имеют четких временных границ. Элементы каждого нового поколения ЭВМ разрабатывались и опробовались на ЭВМ предыдущего поколения.

Первое поколение (1955-1960 гг.)

ЭВМ этого поколения строилось на дискретных элементах и вакуумных лампах, имели большие габариты, вес, мощность, обладая при этом малой надежностью. Они использовались в основном для решения научно-технических задач атомной промышленности, реактивной авиации и ракетостроения.

Увеличению количества решаемых задач препятствовали низкая надежность и производительность, а также чрезвычайно трудоемкий процесс подготовки, ввода и отладки программы, написанной на языке машинных команд, т.е. в форме двоичных кодов.

Машины этого поколения имели быстродействие порядка 10-20 тысяч операций в секунду и ОП порядка 1К (1024 слова). В этот же период появились первые простые языки для автоматизированного программирования.

Второе поколение (1960-1965 гг.)

В качестве элементной базы использовались дискретные полупроводниковые приборы и миниатюрные дискретные детали, а в качестве технологической - печатный монтаж. По сравнению с предыдущим поколением резко уменьшились габариты и энергозатраты, возросла надежность. Возросли также быстродействие (приблизительно 500 тысяч оп/сек) и объем оперативной памяти (16-32К слов). Это сразу расширило круг пользователей, а, следовательно, и решаемых задач. Появились языки высокого уровня (Фортран, Алгол, Кобол) и соответствующие им трансляторы. Были разработаны служебные программы для автоматизации профилактики и контроля работы ЭВМ, а также для лучшего распределения ресурсов при решении пользовательских задач. (Задача экономии времени и ОП осталась, как и в первом поколении).

Все эти вышеперечисленные служебные программы оформились в ОС, которая первоначально просто автоматизировала работу оператора: ввод текста программы, вызов нужного транслятора, вызов необходимых библиотечных программ, размещение программ в основной памяти и т.д. Теперь вместе с программами и исходными данными вводилась целая инструкция о последовательности обработки программы.

Совершенствование аппаратного обеспечения, построенного на полупроводниковой базе, привело к тому, что появилась возможность строить в ЭВМ помимо центрального (основного) процессора еще ряд вспомогательных процессоров. Эти процессоры управляли всей периферией, в частности устройствами ввода/вывода, избавляли от вспомогательной работы центральный процессор. Одновременно совершенствовались и ОС. Это позволило на ЭВМ второго поколения реализовать режим пакетной обработки программ, а также режим разделенного времени, необходимый для параллельного решения нескольких задач управления производством. На машинах второго поколения были впервые опробованы ОП на ферритовых кольцах (так называемые кубы памяти). Все это позволило поднять производство ЭВМ и привлечь к ней массу новых пользователей.

Третье поколение (1965-1970 гг.)

В качестве элементной базы использовались интегральные схемы малой интеграции с десятками активных элементов на кристалл, а также гибридные микросхемы из дискретных элементов. Это позволило сократить габариты и мощность, повысить быстродействие, снизить стоимость универсальных (больших) ЭВМ. Но самое главное - появилась возможность создания малогабаритных, надежных, дешевых машин - мини-ЭВМ. Мини-ЭВМ первоначально предназначались для замены аппаратно-реализуемых контроллеров в контурах управления (в том числе ЭВМ), различных объектов и процессов. Появление мини-ЭВМ позволило сократить сроки разработки контроллеров, поскольку вместо разработки оригинальных сложных логических схем требовалось купить мини-ЭВМ и запрограммировать ее надлежащим образом. Универсальное устройство обладало избыточностью, однако, малая цена и универсальность периферии оказались очень большим плюсом, обеспечившим высокую экономическую эффективность.

Но вскоре потребители обнаружили, что после небольшой доработки можно решать и вычислительные задачи. Простота обслуживания новых машин и их низкая стоимость позволили снабдить подобными вычислительными машинами небольшие коллективы исследователей, разработчиков, учебных заведений и т.д. В начале 70-х гг. с термином мини-ЭВМ уже связывали два существенно различных типа вычислительной техники:

- контроллер - универсальный блок обработки данных и выдачи управляющих сигналов, серийно выпускаемый для использования в различных специализированных системах контроля и управления;

- небольших габаритов универсальная ЭВМ, проблемно-ориентированная пользователем на ограниченный круг задач в рамках одной лаборатории, технологического участка и т.д.

Четвертое поколение (с 1970 г.)

Успехи микроэлектроники позволили создать БИС и СБИС, содержащие десятки тысяч активных элементов. Это позволило разработать более дешевые ЭВМ с большой ОП. Стоимость одного байта памяти и одной машинной операции резко снизилась. Но затраты на программирование почти не сократились. Поэтому на первый план вышла задача экономии человеческих, а не машинных ресурсов.

Для этого разрабатывались новые ОС, позволяющие пользователю вести диалог с ЭВМ. Это облегчало работу пользователя и ускоряло разработку программ. Это потребовало, в свою очередь, организовать одновременный доступ к ЭВМ целого ряда пользователей, работающих с терминалов.

Совершенствование БИС и СБИС привело в начале 70-х гг. к появлению новых типов микросхем – микропроцессоров (в 1968 г. фирма Intel по заказу Дейта-Дженерал разработала и изготовила первые БИС микропроцессоров, которые первоначально предполагалось использовать как составные части больших процессоров).

Первоначально под микропроцессором понималась БИС, в которой полностью размещен процессор простой архитектуры, т.е. АЛУ и УУ. В результате были созданы дешевые микрокалькуляторы и микроконтроллеры - управляющие - устройства, построенные на одной или нескольких БИС, содержащие процессор, память и устройства сопряжения с датчиками и исполнительными механизмами. С совершенствованием их технологического производства и, следовательно, падением цен микрокалькуляторы начали внедряться даже в бытовые приборы и автомашины.

В 70-е же годы появились первые микро-ЭВМ - универсальные вычислительные системы, состоящие из процессора, памяти, схем сопряжения с устройствами ввода/вывода и тактового генератора, размещенные в одной БИС (однокристальная ЭВМ) или в нескольких БИС, установленных на одной печатной плате (одноплатные ЭВМ).

Совершенствование технологии позволило изготовить СБИС, содержащие сотни тысяч активных элементов, и сделать их достаточно дешевыми. Это привело к созданию небольшого настольного прибора, в котором размещалась микро-ЭВМ, клавиатура, экран, магнитный накопитель (кассетный или дисковый), а также схема сопряжения с малогабаритным печатающим устройством, измерительной аппаратурой, другими ЭВМ и т.д. Этот прибор получил название персональный компьютер.

В 1976г. была зарегистрирована компания Apple Comp (Стив Джекоб и Стефан Возняк), которая и начала выпуск первых в мире персональных компьютеров "Макинтош".

Благодаря ОС, обеспечивающей простоту общения с этой ЭВМ больших библиотечных прикладных программ, а также низкой стоимости, персональный компьютер начал стремительно внедрятся в различные сферы человеческой деятельности во всем мире. Об областях и целях его использования можно прочитать в многочисленных литературных источниках. По данным на 1985 год общий объем мирового производства уже составил 200×106 микропроцессоров и 10×106 персональных компьютеров в год.

Что касается больших ЭВМ этого поколения, то происходит дальнейшее упрощение контакта человек-машина. Использование в больших ЭВМ микропроцессоров и СБИС позволило резко увеличить объем памяти и реализовать некоторые функции программ ОС аппаратными методами.

Например, аппаратная реализация транслятора с языка высокого уровня и т.п. Это сильно увеличило производительность ЭВМ, хотя несколько возросла и цена.

Характерным для крупных ЭВМ 4-го поколения является наличие нескольких процессоров, ориентированных на выполнение определенных операций, процедур или решение определенных классов задач. В рамках этого поколения создаются многопроцессорные вычислительные системы с быстродействием в несколько десятков или сотен миллионов оп/сек и многопроцессорные управляющие комплексы повышенной надежности с автоматическим изменением структуры.

Примером вычислительной системы 4-го поколения является многопроцессорный комплекс "Эльбрус-2" с суммарным быстродействием 100×106 оп/сек или вычислительная система ПС-2000, содержащая до 64 процессоров, управляемых общим потоком команд. При распараллеливании вычислительного процесса суммарная скорость достигает 200×106 оп/сек. Следует иметь в виду, что подобные супер-ЭВМ развивают максимальную производительность только при решении определенных типов задач (под которые они и строились). Это задачи сплошных сред, связанные с аэродинамическими расчетами, прогнозами погоды, силовыми энергетическими полями и т.д. Производство супер-ЭВМ во всем мире составляет в настоящее время десятки штук в год и строятся они, как правило, «под заказ».

Пятое поколение.

Характерной особенностью пятого поколения ЭВМ является то, что основные концепции этого поколения были заранее формулированы в явном виде. Задача разработки принципиально новых компьютеров впервые поставлена в 1979 году японскими специалистами, объединившими свои усилия под эгидой научно-исследовательского центра по обработке информации - JIPDEC. В 1981 г. JIPDEC опубликовал предварительный отчет, содержащий детальный многостадийный план развертывания научно-исследовательских и опытно-конструкторских работ с целью создания к 1991 г. прототипа ЭВМ нового поколения.

Указанная программа произвела довольно сильное впечатление сначала в Великобритании, а затем и в США. Под эгидой JIPDEC прошли ряд международных конференций, в частности - "Международная конференция по компьютерным системам пятого поколения" (1981 г.), на которых полностью оформился "образ компьютера пятого поколения". Были разработаны концепции создания не только поколения ЭВМ в целом, но и вопросы архитектуры основных типов ЭВМ этого поколения, структуры программных средств и языков программирования, разработки наиболее перспективной элементной базы и способов хранения информации.

Следует отметить, однако, что оптимистические прогнозы японских специалистов не сбылись. До сих пор не создан компьютер в полной мере удовлетворяющий требованиям, предъявляемым к компьютерам пятого поколения.

Прежде чем перейти к изучению дальнейшего материала, следует сделать некоторые замечания. Дело в том, что, несмотря на общие принципы функционирования всех ЦВМ, их конкретные реализации существенно различаются. Особенно это касается супер-ЭВМ, решающих весьма специфические задачи. Да и обычные серийные большие ЭВМ общего назначения работают, как правило, в составе вычислительных центров и доступ к ним возможен только через терминалы. Кроме того, их архитектура, аппаратное и программное обеспечение достаточно сложны для первоначального изучения. Поэтому в дальнейшем основное внимание в курсе будет уделено ЭВМ, построенным на базе микропроцессоров, т.е. персональным компьютерам. Это имеет смысл еще и потому, что ЭВМ, построенные на базе микропроцессорных комплектов, представляют наибольший интерес для современного инженера, поскольку непосредственно участвуют в работе систем автоматизации производственных процессов, обрабатывают данные научных экспериментов, принимают и обрабатывают потоки информации в каналах связи, решают небольшие расчетные инженерные задачи и т.д. В ряде случаев для решения конкретных задач пользователь сам на базе микропроцессорных комплектов создает специализированные контроллеры и ЭВМ.


Понравилась статья? Добавь ее в закладку (CTRL+D) и не забудь поделиться с друзьями:  



double arrow
Сейчас читают про: