Средняя геометрическая величина

Если при замене индивидуальных величин признака на среднюю величину необходимо сохранить неизменным произведение индивидуальных величин, то следует применить геометрическую среднюю величину. Ее формула такова:

Основное применение геометрическая средняя находит при определении средних темпов роста, о чем сказано в главе 9. Пусть, например, в результате инфляции за первый год цена товара возросла в 2 раза к предыдущему году, а за второй год еще в 3 раза к уровню предыдущего года. Ясно, что за два года цена выросла в 6 раз. Каков средний темп роста цены за год? Арифметическая средняя здесь непригодна, ибо если за год цены возросли бы в раза, то за два года цена возросла бы в 2,5×2,5 = 6, 25 раза, а не в 6 раз. Геометрическая средняя дает правильный ответ: раза.

Геометрическая средняя величина дает наиболее правильный по содержанию результат осреднения, если задача состоит в нахождении такого значения признака, который качественно был бы равно удален как от максимального, так и от минимального значения признака. Например, если максимальный размер выигрыша в лотерее составляет миллион рублей, а минимальный - сто рублей, то какую величину выигрыша можно считать средней между миллионом и сотней? Арифметическая средняя явно непригодна, она составляет 500 050 руб., а это, как и миллион, крупный, никак не средний выигрыш; он качественно однороден с максимальным и резко отличен от минимального. Не дают верного ответа ни квадратическая средняя (707 107 руб.), ни кубическая (793 699 руб.), ни рассматриваемая далее гармоническая средняя (199,98 руб.), слишком близкая к минимальному значению. Только геометрическая средняя дает верный с точки зрения экономики и логики ответ: руб. Десять тысяч — не миллион, и не сотня! Это, действительно, нечто среднее между ними.




double arrow
Сейчас читают про: