Принцип регулирования фазного напряжения

Напряжение со вторичной обмотки трансформатора проходит через вентиль на нагрузку только в положительные полупериоды переменного напряжения. В отрицательные полупериоды вентиль закрыт, всё падение напряжения происходит на вентиле, а напряжение на нагрузке Uн равно нулю.

. Эта величина вдвое меньше, чем в полномостовом.

Недостатки:[9]

  • Большая величина пульсаций
  • Сильная нагрузка на вентиль (требуется диод с большим средним выпрямленным током)
  • Низкий коэффициент использования габаритной мощности трансформатора (около 0,45) (не путать с КПД, который зависит от потерь в меди и потерь в стали и в однополупериодном выпрямителе почти такой же, как и в двухполупериодном).

Преимущества:

  • Экономия на количестве вентилей.

Искажение формы напряжения в питающей сети происходит из-за того, что в течение полупериода сопротивление нагрузки меняется (резко падает при открытии вентилей), в результате чего возрастает ток и увеличивается падение напряжения на сопротивлениях источника и сети. Форма напряжения становится несинусоидальной, что особенно неблагоприятно для асинхронных двигателей.

Диаграммы входного напряжения и входного тока регулятора (первая диаграмма) и выходного напря­жения (вторая диаграмма) при работе на активную нагрузку. Для регуляторов переменного напряжения значимы два вида регу­лировочных характеристик в зависимости от характера нагрузки. При работе на активную нагрузку показа­тельной является зависимость действующего значения выходного напряжения регулятора от угла регулиро­вания .

Графики рассчитанных регулировочных характеристик, причем СР(1) построена для двух крайних сочетаний параметров нагрузки - без RH (индуктивная нагрузка) и без LH (чисто активная нагрузка).

Входной коэффициент сдвига и коэффициент мощности. Второй важной характеристикой регулятора напряжения является его входная энергетическая характеристика - зависимость входного коэффициента мощности от степени регулирования выходного напряжения. Так как входной коэффициент мощности равен произве­дению коэффициента сдвига на коэффициент искажения входного тока, то удобно найти отдельные зависимости для указанных со­множителей.

3-5. Регулирование напряжения переменного тока (на примере сх. используемой встречно-параллельное включение тиристоров, диаграммы при разном характере нагрузки и соотношении α и φ, нагрузки R и L).

Простейший регулятор однофазного переменного напряжения состоит из двух встречно-параллельно включенных тиристоров, соединенных последовательно с нагрузкой, как показано на рис. 3.2.1.

На рис. 3.2.2 построе­ны диаграммы напряжений и токов регулятора. Углы управ­ления тиристорами должны быть такими, чтобы ток в последовательной активно-индуктивной нагрузке был прерывистым. Соотношение для угла регулирования , длительности протекания тока через тиристор и параметров нагрузки LH, RH здесь такое же, как у однофазного выпрямителя в режиме прерывистого тока. Увеличение угла регули­рования приводит к уменьшению и росту искажения кривой напряжения на нагрузке UH и за счет этого к изменению его действующего значения и первой гармоники. При этом ухудшается и качест­во потребляемого из сети тока из-за роста сдвига фазы тока относительно напряжения (увеличение потребле­ния реактивной мощности) и за счет ухудшения его формы вследствие уменьшения длительности протекания .

РИС. 3.2.2

Возможен и другой способ регулирования переменного напряжения в этой схеме - широтно-импульсное регулирование при естественной коммутации. На рис. 3.2.3 показаны диаграммы входного напряжения и входного тока такого регулятора (первая диаграмма) и выходного напря­жения (вторая диаграмма) при работе на активную нагрузку (термопечи сопротивления). Здесь уже цель ре­гулирования состоит в изменении действующего значения напряжения на активной нагрузке для преобразо­вания электрической энергии в тепловую. При таком регулировании период входного тока регулятора ТU много больше периода сетевого напряжения Т1 и в этом токе появляются субгармоники, т.е. гармоники с час­тотой ниже частоты сетевого напряжения. Это, в свою очередь, при «слабой» сети может вызвать в ней низкочастотные колебания уровня напряжения, при­водящие к мерцанию освещения (фликкер-эффект), нормы которого устанавливаются ГОСТом на качество электроэнергии.

Улучшение напряжения, основные схемы которых приведены на рис. 3.2.4. Схема на рис. 3.2.4,а объединяет три однофаз­ных регулятора и при отсутствии нулевого провода характеризуется лучшим качеством выходного фазного напряжения, как в шестипульсной схеме, а не как в двухпульсной схеме однофазного регулятора. Форма напряжения на фазе нагрузки и ток фазы показаны на рис. 3.2.5,а,б для активной и активно-индуктивной нагрузки соответственно. Более простая схема регулятора на рис. 3.2.4,б характеризуется худшим качеством выходно­го напряжения, проявляющимся в неодинаковости форм полуволн фазного напряжения, но без постоянной составляющей в нем. Схемы регуляторов на рис. 3.2.4,в,г применимы при условии доступности всех шести концов трехфазной нагрузки. При использовании трансформатора в регуляторе возможно более качественное регулирование переменного напряжения за счет использования комбинации фазового и амплитудного спосо­бов регулирования.


Понравилась статья? Добавь ее в закладку (CTRL+D) и не забудь поделиться с друзьями:  



double arrow
Сейчас читают про: