Алгоритм вычисления кодов Шеннона-Фано

Код Шеннона-Фано строится с помощью дерева. Построение этого дерева начинается от корня. Всё множество кодируемых элементов соответствует корню дерева (вершине первого уровня). Оно разбивается на два подмножества с примерно одинаковыми суммарными вероятностями. Эти подмножества соответствуют двум вершинам второго уровня, которые соединяются с корнем.

Далее каждое из этих подмножеств разбивается на два подмножества с примерно одинаковыми суммарными вероятностями. Им соответствуют вершины третьего уровня. Если подмножество содержит единственный элемент, то ему соответствует концевая вершина кодового дерева; такое подмножество разбиению не подлежит. Подобным образом поступаем до тех пор, пока не получим все концевые вершины. Ветви кодового дерева размечаем символами 1 и 0, как в случае кода Хаффмана.

При построении кода Шеннона-Фано разбиение множества элементов может быть произведено, вообще говоря, несколькими способами. Выбор разбиения на уровне n может ухудшить варианты разбиения на следующем уровне (n + 1) и привести к неоптимальности кода в целом. Другими словами, оптимальное поведение на каждом шаге пути ещё не гарантирует оптимальности всей совокупности действий.

Поэтому код Шеннона-Фано не является оптимальным в общем смысле, хотя и дает оптимальные результаты при некоторых распределениях вероятностей. Для одного и того же распределения вероятностей можно построить, вообще говоря, несколько кодов Шеннона-Фано, и все они могут дать различные результаты. Если построить все возможные коды Шеннона-Фано для данного распределения вероятностей, то среди них будут находиться и все коды Хаффмана, то есть оптимальные коды.

Пример кодового дерева

Исходные символы:

A (частота встречаемости 50)

B (частота встречаемости 39)

C (частота встречаемости 18)

D (частота встречаемости 49)

E (частота встречаемости 35)

F (частота встречаемости 24)

Кодовое дерево

Полученный код: A — 11, B — 101, C — 100, D — 00, E — 011, F — 010.

Кодирование Шеннона-Фано является достаточно старым методом сжатия, и на сегодняшний день оно не представляет особого практического интереса. В большинстве случаев, длина последовательности, сжатой по данному методу, равна длине сжатой последовательности с использованием кодирования Хаффмана. Но на некоторых последовательностях могут сформироваться неоптимальные коды Шеннона-Фано, поэтому более эффективным считается сжатие методом Хаффмана.

Пример 1. Закодируем буквы алфавита в коде Шеннона-Фано.

Пусть имеется случайная величина X (x1, x2, x3, x4, x5, x6, x7, x8), имеющая восемь состояний с распределением вероятностей

Для кодирования алфавита из восьми букв без учета вероятностей равномерным двоичным кодом нам понадобятся три символа:

Это 000, 001, 010, 011, 100, 101, 110, 111

Чтобы ответить, хорош этот код или нет, необходимо сравнить его с оптимальным значением, то есть определить энтропию

Определив избыточность L по формуле L=1-H/H0=1-2,75/3=0,084, видим, что возможно сокращение длины кода на 8,4%.

Все буквы записываются в порядке убывания их вероятностей, затем делятся на равновероятные группы, которые обозначаются 0 и 1, затем вновь делятся на равновероятные группы и т.д. (см.табл.4.1)

Таблица 4.1.

   
X P         Коды
x1 1/4     ------- -------  
x2 1/4   ------- -------  
x3, 1/8       -------  
x4 1/8   -------  
x5 1/16        
x6 1/16    
x7 1/16      
x8 1/16    

Средняя длина полученного кода будет равна

Итак, мы получили оптимальный код. Длина этого кода совпала с энтропией. Данный код оказался удачным, так как величины вероятностей точно делились на равновероятные группы.

Пример 2.

Возьмем 32 две буквы русского алфавита. Частоты этих букв известны. В алфавит включен и пробел, частота которого составляет 0,145. Метод кодирования представлен в таблице

   
Буква Рi         Код
 ? 0.145       -  
о 0.095   -  
е 0.074        
а 0.064    
и 0.064      
н 0.056    
т 0.056   -  
с 0.047  
...
ф 0.03

Средняя длина данного кода будет равна, бит/букву;

Энтропия H=4.42 бит/буква. Эффективность полученного кода можно определить как отношение энтропии к средней длине кода. Она равна 0,994. При значении равном единице код является оптимальным. Если бы мы кодировали кодом равномерной длины , то эффективность была бы значительно ниже.


Понравилась статья? Добавь ее в закладку (CTRL+D) и не забудь поделиться с друзьями:  



double arrow
Сейчас читают про: