Регулярные графы

Одним из методов построения топологических структур сетей с заданными свойствами является синтез графов с помощью известных математических операций. На рис. 8 приведен граф, построенный таким путем. Обычно такие графы обладают некоторой регулярностью, т.е. все их узлы равноправны в смысле топологии сети.

Граф Петерсона, изображенный на рис. 2.1, состоит из 10 узлов и 15 линий со связностью 3. Степень каждого узла также равна трем, и, следовательно, связность этого графа максимальна. Говорят, что такой граф имеет максимальную связность. Другое свойство оптимальности графа Петерсона связано с диаметром графа, т.е. максимальным расстоянием между парами узлов сети, измеряемым числом "шагов" от узла к узлу. На втором уровне будет три узла, так как степень исходного узла была равна трем. По той же причине каждый из трех узлов второго уровня будет соединен не более чем с двумя узлами третьего уровня. На расстоянии двух шагов от исходного будет не более 10 узлов, включая и его самого. Таким образом, граф степени 3 и диаметра 2 не может содержать более десяти узлов. Этот максимум достигается на графе Петерсона.

Рис. 2.1. Граф Петерсона

Регулярные графы такого типа представляют большой теоретический интерес и могут оказаться полезными на практике при конструировании коммутаторов из одинаковых компонентов. В коммутации каналов уже сейчас используются регулярные соединения компонент, и, если экономика производства будет и дальше развиваться в том же направлении, это может стать характерной чертой коммутации вообще. При построении крупномасштабных сетей связи с географически далеко отстоящими друг от друга узлами регулярные синтезированные графы едва ли найдут применение, поскольку стоимость линий связи, являющихся важными параметрами оптимизации, сильно меняется в зависимости от географических факторов.

Важным элементом является определение связности и реберной связности графа. В связности небольшой сети можно легко убедиться простой проверкой. Для больших сетей проверка связности представляет весьма сложную задачу, которая тем не менее весьма часто встречается на практике.




double arrow
Сейчас читают про: