Теплоемкость. Молярная теплоемкость газа. Степени свободы

Под теплоемкостью С телапонимают то количество тепла, которое надо сообщить телу, чтобы повысить его температуру на один градус Кельвина:

(Дж/К) (24)

Если передается энергия не всему телу, а одному килограмму, то говорят об удельной теплоемкости с = С/m (Дж/(кг·К)). Если речь идет об одном моле, то говорят о молярной теплоемкости , измеряемой в Дж/(моль·К). О ней мы и будем говорить далее.

Поскольку при переходе тела из одного состояния в другое δQ зависит от процесса, по которому производится этот пере­ход, теплоемкость тоже зависит от процесса. Если процесс изохорический (V = const), то теплоемкость обозначается СV. Если процесс изобарический, то – Ср. При изотермическом процессе dT = 0, a δQ не равно нулю и соответствующая теплоемкость устремляется к бесконечности СТ ∞.

Определим СV (теплоемкость 1 моля при постоянном объе­ме), использовав первое начало термодинамики в дифференциальной форме (19).

Поскольку V = const, то dV = 0 и δA = 0 и для СV получаем:

(25).

Значок вне скобок указывает на тип процесса, т. е. что V = const. Соотношение (25) означает, что при постоянном объеме все подводимое тепло идет только на изменение внутренней энергии U.

При изобарическом процессе (р = const), для теплоемкости Ср получаем:

(26).

Найдем (dV/dT)p из уравнения Клапейрона (4):

(27)

и подставив в (26), получим уравнение Майера: (28).

Cp больше, чем СV, так как подведенная теплота идет не только на увеличение внутренней энергии, но и на работу расшире­ния газа.

Определим dU/dT, так как эта производная входит в (25) и (26). Для идеального газа внутренняя энергия равна сумме средних кинетических энергий всех N молекул: (29).Тогда ; ; (30). В выражении для учитывалась только кинетическая энергия поступательного движения в трехмерном пространстве. Число независимых координат, необходимых, чтобы полностью определить положение тела в пространстве, называется числом степеней свободы i. Бу­дем считать атомы, из которых состоит моле­кула, материальными точками, тогда одноатомная молекула имеет три степе­ни свободы поступательного движения i = 3. И т.о., на каждую степень свободы приходится энергия по (1/2) .

Если молекула двух­атомная (рис.), то, кроме поступательного движения, она может еще вращаться вокруг осей x и y.

Вращение вокруг оси z не дает вкла­да в энергию, так как энергия вращательного движения равна J·ω2/2 = m·r2·ω2/2, а двухатомная молекула не имеет пространственной протяженности вдоль осей x и y.

Надо не только задать три координаты, чтобы определить положение центра масс молекулы в пространстве, но и задать еще две (вращательные) координаты, чтобы определить ее ориентацию в пространстве. Т.о., число степеней свободы для двухатомной молекулы i = 5.

Для трех- и более атомной молекулы вклад в энергию даст и вращение вокруг оси z. Для них i = 6.

Молекулы мы считали жесткими; ко­лебательные степени свободы не
учитывались. Если их учесть, результат будет немного иной, но колебательные степени свободы становятся существенными только привысоких температурах.

Итак, для жестких молекул внутренняя энергия и молярные теплоемкости равны: ; (31).

Все это сильно упрощенные рассуждения, непригодные, например, при очень низких или высоких температурах. Более последователь­ная теория теплоемкости строится на основе квантовой физики.


Понравилась статья? Добавь ее в закладку (CTRL+D) и не забудь поделиться с друзьями:  




Подборка статей по вашей теме: