double arrow

Интеграл с переменным верхним пределом интегрирования. Формула Ньютона-Лейбница


Если функция y=f(x) интегрируема на отрезке [a, b],то, очевидно, она интегрируема также на произвольном отрезке [a, х], вложенном в [a, b].

Положим по определению

Ф(х) = = , (9)

где [a, b], а функция Ф(х) называется интегралом с переменным верхнимпределом.

Свойства функции Ф(х) (интеграла с переменным верхним пределом):

Теорема 1. Если функция f(x) непрерывна на отрезке[a, b], то функция Ф(х) так же непрерывна на [a, b].

Теорема 2. Пусть функция f(x) непрерывна на отрезке[a, b]. Тогда в каждой точке х отрезка[a, b] производная функции Ф(х) по переменному пределу равна подынтегральной функции f(x), т.е.

Ф(х) = ( ) = f(x).

Следствие. Если функция у = f(x) непрерывна на отрезке[a, b], то для этой функции существует первообразная на отрезке[a, b].

Заказать ✍️ написание учебной работы
Поможем с курсовой, контрольной, дипломной, рефератом, отчетом по практике, научно-исследовательской и любой другой работой

Сейчас читают про:
Поможем в написании
> Курсовые, контрольные, дипломные и другие работы со скидкой до 25%
3 569 лучших специалисов, готовы оказать помощь 24/7