Студопедия
МОТОСАФАРИ и МОТОТУРЫ АФРИКА !!!

Авиадвигателестроения Административное право Административное право Беларусии Алгебра Архитектура Безопасность жизнедеятельности Введение в профессию «психолог» Введение в экономику культуры Высшая математика Геология Геоморфология Гидрология и гидрометрии Гидросистемы и гидромашины История Украины Культурология Культурология Логика Маркетинг Машиностроение Медицинская психология Менеджмент Металлы и сварка Методы и средства измерений электрических величин Мировая экономика Начертательная геометрия Основы экономической теории Охрана труда Пожарная тактика Процессы и структуры мышления Профессиональная психология Психология Психология менеджмента Современные фундаментальные и прикладные исследования в приборостроении Социальная психология Социально-философская проблематика Социология Статистика Теоретические основы информатики Теория автоматического регулирования Теория вероятности Транспортное право Туроператор Уголовное право Уголовный процесс Управление современным производством Физика Физические явления Философия Холодильные установки Экология Экономика История экономики Основы экономики Экономика предприятия Экономическая история Экономическая теория Экономический анализ Развитие экономики ЕС Чрезвычайные ситуации ВКонтакте Одноклассники Мой Мир Фейсбук LiveJournal Instagram

Репликация ДНК. Основные этапы и механизм




Поскольку ДНК является молекулой наследственности, то для реализации этого качества она должна точно копировать саму себя и таким образом сохранять всю имеющуюся в исходной молекуле ДНК информацию в виде определенной последовательности нуклеотидов. Это обеспечивается за счет особого процесса, предшествующего делению любой клетки организма, который называется репликацией ДНК.

Суть репликации днк заключается в том, что специальный фермент разрывает слабые водородные связи, которые соединяют между собой нуклеотиды двух цепей. В результате цепи ДНК разъединяются, и из каждой цепи «торчат» свободные азотистые основания (возникновение так называемой вилки репликации). Особый фермент ДНК-полимераза начинает двигаться вдоль свободной цепи ДНК от 5- к З-концу (лидирующая цепь), помогая присоединиться свободным нуклеотидам, постоянно синтезируемым в клетке, к З'-концу вновь синтезируемой цепи ДНК. На второй нити ДНК (отстающая нить) новая ДНК образуется в виде небольших сегментов, состоящих из 1000-2000 нуклеотидов (фрагменты Оказаки).

Для начала репликации днк фрагментов этой нити требуется синтез коротких фрагментов РНК (о характерных особенностях РНК будет сказано ниже) как затравок, для чего используется особый фермент — РНК-полимераза (праймаза). Впоследствии праймеры РНК удаляются, в образовавшиеся бреши встраивается ДНК с помощью ДНК полимеразы I. Таким образом, каждая цепь ДНК используется как матрица или шаблон для построения комплементарной цепи и репликация ДНК является полуконсервативной (т.е. одна нить в новой молекуле ДНК — «старая», а вторая — новая).

Для репликации лидирующей и отстающей цепей клеткой используют разные ферменты. В результате репликации образуются две новые абсолютно идентичные молекулы ДНК, идентичные также исходной молекуле ДНК до начала ее редупликации (более подробно процесс репликации ДНК показан на рис. 3.5). ДНК-полимераза, как и любой другой фермент, существенно ускоряет процесс присоединения комплементарных нуклеотидов к свободной цепи ДНК, однако химическое сродство аденина к тимину, а цитозина к гуанину столь велико, что они соединяются друг с другом и в отсутствие ДНК-полимеразы в простой реакционной смеси.

Можно сказать, несколько упрощая, что феномен точного удвоения молекулы ДНК, в основе которого лежит компле-ментарность оснований этой молекулы, составляет молекулярную основу наследственности. Скорость репликации ДНК у человека относительно низкая и для того, чтобы обеспечить репликацию ДНК любой хромосомы человека, требовались бы недели, если бы репликация начиналась из одной точки. На самом деле в молекуле ДНК любой хромосомы, а-каждая хромосома человека содержит только одну молекулу ДНК, имеется множество мест инициации репликации (репликонов). От каждого репликона репликация идет в обоих направлениях до тех пор, пока соседние репликоны не сливаются. Поэтому репликация ДНК в каждой хромосоме протекает относительно быстро.




Реплика?ция (от лат. replicatio — возобновление) — процесс синтеза дочерней молекулы ДНК на матрице родительской молекулы ДНК. В ходе последующего деления материнской клетки каждая дочерняя клетка получает по одной копии молекулы ДНК, которая является идентичной ДНК исходной материнской клетки. Этот процесс обеспечивает точную передачу генетической информации из поколения в поколение. Репликацию ДНК осуществляет сложный ферментный комплекс, состоящий из 15-20 различных белков, называемый реплисомой (англ. replisome)

Репликация ДНК — ключевое событие в ходе деления клетки. Принципиально, чтобы к моменту деления ДНК была реплицирована полностью и при этом только один раз. Это обеспечивается определёнными механизмами регуляции репликации ДНК.

Репликация проходит в три этапа:

1. Инициация репликации

2. Элонгация

3. Терминация репликации.

Регуляция репликации осуществляется в основном на этапе инициации. Это достаточно легко осуществимо, потому что репликация может начинаться не с любого участка ДНК, а со строго определённого, называемого сайтом инициации репликации. В геноме таких сайтов может быть как всего один, так и много. С понятием сайта инициации репликации тесно связано понятие репликон. Репликон — это участок ДНК, который содержит сайт инициации репликации и реплицируется после начала синтеза ДНК с этого сайта. Геномы бактерий, как правило, представляют собой один репликон, это значит, что репликация всего генома является следствием всего одного акта инициации репликации.



Геномы эукариот (а также их отдельные хромосомы) состоят из большого числа самостоятельных репликонов, это значительно сокращает суммарное время репликации отдельной хромосомы. Молекулярные механизмы, которые контролируют количество актов инициации репликации в каждом сайте за один цикл деления клетки, называются контролем копийности. В бактериальных клетках помимо хромосомной ДНК часто содержатся плазмиды, которые представляют собой отдельные репликоны. У плазмид существуют свои механизмы контроля копийности: они могут обеспечивать синтез как всего одной копии плазмиды за клеточный цикл, так и тысяч копий.

Репликация начинается в сайте инициации репликации с расплетания двойной спирали ДНК, при этом формируется репликационная вилка — место непосредственной репликации ДНК. В каждом сайте может формироваться одна или две репликационные вилки в зависимости от того, является ли репликация одно- или двунаправленной. Более распространена двунаправленная репликация. Через некоторое время после начала репликации в электронный микроскоп можно наблюдать репликационный глазок — участок хромосомы, где ДНК уже реплицирована, окружённый более протяжёнными участками нереплицированной ДНК.

В репликационной вилке ДНК копирует крупный белковый комплекс (реплисома), ключевым ферментом которого является ДНК-полимераза. Репликационная вилка движется со скоростью порядка 100 000 пар нуклеотидов в минуту у прокариот и 500-5000 — у эукариот.

Молекулярный механизм репликации:

Ферменты (хеликаза, топоизомераза) и ДНК-связывающие белки расплетают ДНК, удерживают матрицу в разведённом состоянии и вращают молекулу ДНК. Правильность репликации обеспечивается точным соответствием комплементарных пар оснований и активностью ДНК-полимеразы, способной распознать и исправить ошибку. Репликация у эукариот осуществляется несколькими разными ДНК-полимеразами (в отличие от репликации ДНК у прокариот).

ДНК-полимераза I действует на запаздывающей цепи для удаления РНК-праймеров и дорепликации очищенных мест ДНК. ДНК полимераза III — основной фермент репликации ДНК, осуществляющий синтез ведущей цепи ДНК и фрагментов Оказаки при синтезе запаздывающей цепи (фрагменты Оказаки – относительно короткие фрагменты ДНК, которые образуются на отстающей цепи в процессе репликации ДНК). Далее происходит закручивание синтезированных молекул по принципу суперспирализации и дальнейшей компактизации ДНК. Синтез энергозатратный.

Цепи молекулы ДНК расходятся, образуют репликационную вилку, и каждая из них становится матрицей, на которой синтезируется новая комплементарная цепь. В результате образуются две новые двуспиральные молекулы ДНК, идентичные родительской молекуле.





Дата добавления: 2015-02-14; просмотров: 15968; Опубликованный материал нарушает авторские права? | Защита персональных данных


Не нашли то, что искали? Воспользуйтесь поиском:

Лучшие изречения: Да какие ж вы математики, если запаролиться нормально не можете??? 8808 - | 7627 - или читать все...

Читайте также:

  1. A Внутренний механизм активации протромбиназы
  2. B K- и r-стратегии популяций. Способы регуляции численности у человека. Механизм современного демографического перехода
  3. B Концепция биосферы, ее границы. Принципы развития биосферы, ее основные компоненты и главные биогеохимические циклы
  4. B Основные виды негативного воздействия человека на биосферу. Глобальные экологические проблемы
  5. B Основные положения теории Дарвина. Роль естественного отбора. Дарвиновская «триада». Что добавили к ней современные пред-ставления об эволюции?
  6. B Основные этапы эволюции человека
  7. G. ФИЗИОЛОГИЧЕСКИЕ И ПСИХОЛОГИЧЕСКИЕ МЕХАНИЗМЫ АДДИКЦИИ
  8. I .Основные математические понятия и факты
  9. I группа. Основные счета. Применяются для учета и контроля за наличием и движением хозяйственных средств и источников их формирования
  10. I. Основные свойства живого
  11. I.5. Основные критерии оценки ответов
  12. II. 6.4. Основные виды деятельности и их развитие у человека


 

3.209.10.183 © studopedia.ru Не является автором материалов, которые размещены. Но предоставляет возможность бесплатного использования. Есть нарушение авторского права? Напишите нам | Обратная связь.


Генерация страницы за: 0.002 сек.