Студопедия
МОТОСАФАРИ и МОТОТУРЫ АФРИКА !!!


Авиадвигателестроения Административное право Административное право Беларусии Алгебра Архитектура Безопасность жизнедеятельности Введение в профессию «психолог» Введение в экономику культуры Высшая математика Геология Геоморфология Гидрология и гидрометрии Гидросистемы и гидромашины История Украины Культурология Культурология Логика Маркетинг Машиностроение Медицинская психология Менеджмент Металлы и сварка Методы и средства измерений электрических величин Мировая экономика Начертательная геометрия Основы экономической теории Охрана труда Пожарная тактика Процессы и структуры мышления Профессиональная психология Психология Психология менеджмента Современные фундаментальные и прикладные исследования в приборостроении Социальная психология Социально-философская проблематика Социология Статистика Теоретические основы информатики Теория автоматического регулирования Теория вероятности Транспортное право Туроператор Уголовное право Уголовный процесс Управление современным производством Физика Физические явления Философия Холодильные установки Экология Экономика История экономики Основы экономики Экономика предприятия Экономическая история Экономическая теория Экономический анализ Развитие экономики ЕС Чрезвычайные ситуации ВКонтакте Одноклассники Мой Мир Фейсбук LiveJournal Instagram

Схема шифрования Эль Гамаля




Схема Эль Гамаля, предложенная в 1985 г., может быть использована как для шифрования, так и для цифровых подписей. Безопасность схемы эль гамаля обусловлена сложностью вычисления дискретных логарифмов в конечном поле.

Для того чтобы генерировать пару ключей (открытый ключ – секретный ключ), сначала выбирают некоторое большое простое число Р и большое целое число G, причем G < P. Числа Р и G могут быть распространены среди группы пользователей.

Затем выбирают случайное целое число X, причем X<P. Число X является секретным ключом и должно храниться в секрете.

Далее вычисляют Y = GX mod P. Число Y является открытым ключом.

Для того чтобы зашифровать сообщение M, выбирают случайное целое число k, 1< k< p –1, такое, что числа к и (P –1) являются взаимно простыми.

Затем вычисляют числа

a = GK mod P,

b = YK M mod P.

Пара чисел (a,b) является шифртекстом. Заметим, что длина шифртекста вдвое больше длины исходного открытого текста М.

Для того чтобы расшифровать шифртекст (a,b), вычисляют

M = b/aX mod P. (*)

Поскольку

aX º GKX mod P,

b/aX ºYKM/aX º GKXM/GKX º M (mod P),

то соотношение (*) справедливо.

В реальных схемах шифрования необходимо использовать в качестве модуля P большое целое простое число, имеющее в двоичном представлении длину 512…1024 бит.

При программной реализации схемы Эль Гамаля [123] скорость ее работы (на SPARC-II) в режимах шифрования и расшифрования при 160-битовом показателе степени для различных длин модуля P определяется значениями, приведенными в табл.4.2.

Таблица 4.2

Скорости работы схемы Эль Гамаля

Режим работы Длина модуля, бит
Шифрование 0,33 с 0,80 с 1,09 с
Расшифрование 0,24 с 0,58 с 0,77 с




Дата добавления: 2015-02-04; просмотров: 320; Опубликованный материал нарушает авторские права? | Защита персональных данных | ЗАКАЗАТЬ РАБОТУ


Не нашли то, что искали? Воспользуйтесь поиском:

Лучшие изречения: Учись учиться, не учась! 10558 - | 7969 - или читать все...

Читайте также:

 

34.237.51.159 © studopedia.ru Не является автором материалов, которые размещены. Но предоставляет возможность бесплатного использования. Есть нарушение авторского права? Напишите нам | Обратная связь.


Генерация страницы за: 0.001 сек.