Уравнение неразрывности

Глава 3

УРАВНЕНИЯ ДВИЖЕНИЯ ГАЗА

КАК СПЛОШНОЙ СРЕДЫ

Уравнения движения выводятся исходя из закона сохранения массы, закона изменения количества движения, закона сохранения энергии, уравнения термодинамического состояния и уравнения напряженного состояния.

Применим эти законы к массе жидкости m, находящейся в момент времени t в некотором произвольно выделенном объеме V. Будем считать, что внутри объема нет ни источников, ни стоков.

Уравнение неразрывности

Согласно закону сохранения массы для изолированной системы, масса жидкости m, которая находилась в момент времени t в рассматриваемом объеме, будет оставаться неизменной при ее движении. То есть и .

Изменение массы при движении может происходить как за счет изменения плотности с течением времени, так и за счет изменения объема V, который может занимать рассматриваемая масса жидкости в следующий момент времени. Изменение массы за счет изменения плотности запишется как .

Найдем изменение массы за счет изменения объема. Элемент поверхности dS рассматриваемого объема переместится за время на расстояние (рис. 3.1); за счет перемещения элемента поверхности объем изменится в единицу времени на . Тогда изменение массы равно . Поскольку суммарное изменение массы равно нулю, то получаем – закон сохранения массы в интегральной форме.

Преобразуем интеграл по площади в интеграл по объему с помощью формулы Остроградского–Гаусса:

.

Объединяя интегралы, получим . В силу произвольности элементарного объема это равенство возможно, если подынтегральное выражение равно нулю, т. е. если

. (3.1)

Выражение (3.1) представляет собой закон сохранения массы в дифференциальной форме, или иначе – уравнение неразрывности для неустановившегося движения сжимаемой жидкости. Для установившегося движения сжимаемой жидкости уравнение неразрывности имеет вид

. (3.1а)

Приведем уравнение (3.1) к другой форме, произведя следующие преобразования:

Так как , то уравнение неразрывности примет вид

. (3.1б)

В случае движения несжимаемой жидкости () запись уравнения неразрывности еще более упростится:

. (3.1в)

Если движение несжимаемой жидкости потенциальное, то проекции вектора скорости на координатные направления можно записать через потенциал вектора скорости как

Тогда . Так как – это оператор Лапласа, то уравнение неразрывности для случая потенциального движения несжимаемой жидкости преобразуется в уравнение Лапласа:

. (3.1г)

В случае установившегося движения газа при решении практических задач часто используется уравнение неразрывности в форме уравнения массового расхода:

, (3.2)

где F – площадь поперечного сечения трубки тока, или (при движении несжимаемой среды) в форме объемного расхода:

. (3.2а)

Формулы (3.2) и (3.2а) получаются элементарным образом при рассмотрении расхода сжимаемой и несжимаемой жидкости через поперечные сечения трубки тока.


Понравилась статья? Добавь ее в закладку (CTRL+D) и не забудь поделиться с друзьями:  



double arrow
Сейчас читают про: