1. Функция
называется непрерывной в точке x0, если она удовлетворяет следующим условиям: 1) определена в точке x0; 2) имеет конечный предел при х → x0 ;
3) этот предел равен значению функции в этой точке:
(6.1)
(первое определение).
2. Функция
называется непрерывной в точке x0, если она определена в этой точке и бесконечно малому приращению аргумента соответствует бесконечно малое приращение функции:
(6.2)
(второе определение).
3. Если функции
и
непрерывны в точке, то их сумма, произведение и частное (при условии, что знаменатель отличен от нуля) являются функциями, непрерывными в этой точке.
4. Если функция у =
непрерывна в точке u0 =
, а функция u=
непрерывна в точке x0, то сложная функция у =
непрерывна в точке x0.
5. Функция называется непрерывной на некотором промежутке, если она непрерывна в каждой точке этого промежутка. Все элементарные функции непрерывны во всех точках, где они определены.
6. Если не выполнено определение непрерывности (6.1) или (6.2), то функция в точке x0 терпит разрыв, причем:
а) если хотя бы один из односторонних пределов
или 
бесконечен, то x0 - точка разрыва второго рода;
б) если оба односторонних предела
и
конечны, но не равны между собой, то x0 — точка неустранимого разрыва первого рода;
в) если оба односторонних предела
и
конечны, равны между собой, но не равны
, то x0 — точка устранимого разрыва первого рода.
6.168. Исследовать на непрерывность функции у =
в точке х = 1. В случае разрыва установить его характер в точке х = 1:
а)
; б)
; в)
; г)
.
Решение: а) При х = 1 функция не определена, следовательно, функция в точке
х = 1 терпит разрыв (рис. 6.1):
, т.е. конечный предел существует; следовательно, х = 1 — точка устранимого разрыва первого рода. (Доопределив функцию в точке х = 1, т.е. положив
= 0, получим, что новая функция
будет уже непрерывна в точке х = 1.)
6) При x = 1 функция не определена, следовательно, функция в точке x = 1 терпит разрыв (рис. 6.2): 
Так как односторонние пределы (достаточно было бы одного) бесконечны, то х = 1 – точка разрыва функции второго рода.
![]() |

в) При х = 1 функция определена,
(x -1) = 0,
(x -1) = 0, у (1) = 1 - 1 = 0, т.е.
у (х)=
у (х) = у (1) = 0, следовательно, функция в точке х = 1 непрерывна
(рис. 6.3).
![]() |
г) При х = 1 функция определена, у (1)=0,
у(х)=
(х +1)=2,
у (х)=
(х -1)=0,
имеем
у (х) ≠
у (х), таким образом, в точке х = 1 функция терпит неустранимый разрыв первого рода (рис. 6.4.)








