double arrow

Из сравнения соотношений (3.3) и (3.10), получим уравнение скорости

(3.11)

и формулу для вычисления ядра потока

(3.12)

Интегрируя уравнения (3.11) при условии v(h) = 0,найдем следующее распределение скорости:

(3.13)

Отсюда следует, что при h0 = h движение жидкости происходить не будет, так как v(x) = 0. Поэтому условием существования движения является h0 < h или, используя формулу (3.12),

Однако если учесть, что начало движения рассматриваемой жидкости обусловлено не динамическим напряжением сдвига τ0, а статическим τ00> τ0, то условием страгивания покоящейся жидкости будет

По формулам (3.5) определяются основные характеристики потока, впервые полученные М. П. Воларовичем и А. М. Гуткиным:

(3.14)

где

Видно, что в данном случае кинематические характеристики потока Q, v cp и коэффициент сопротивления λ зависят от градиента давления нелинейно, что вызывает известные трудности при решении обратной задачи.

Если исходить из того, что практический интерес представляют случаи то, приняв получим

(3.15)

где - обобщенный параметр Рейнольдса; приведенная вязкость жидкости Шведова-Бингама;

- параметр Сен-Венана для плоской щели.

3. Для неньютоновской жидкости Освальда — Вейля, используя в последней системе уравнений (2.24) соотношения (3.1) и (3.9), получим

При сопоставлении этого уравнения состояния с (3.3) приходим к относительно скорости:

(3.16)

Интегрируя это уравнение при граничном условии v(h) = 0, получим распределение скорости

(3.17)

где

В результате интегральные характеристики потока (3.5) будут


(3.18)

где - обобщенный параметр Рейнольдса и приведенная вязкость жидкости Освальда-Вейля для плоской щели. При

n =1 и k = μ формулы (3.17) — (3.18) совпадут с формулами (3.7) —(3.8).

4. При турбулентном режиме течения, когда параметры Rе, Re* или Rе' больше критических значений, решение уравнения движе­ния записывается в виде [сравните с (3.3)]

(3.19)


Касательное напряжение в зависимости от типа жидкости связано со скоростью сдвига уравнениями вида (3.6), (3.10) или (3.16). Напряжение Рейнольдса в силу соотношений (2.20), (3.1) и (3.9) удовлетворяет уравнению Прандтля:

(3.20)

где принимается, что величина l линейно зависит от расстояния до стенки канала s = h - x, т. е.

s, (3.21)

где — константа, определяемая из опыта.

Напряжение имеет существенное значение лишь в непосред­ственной близости от стенок канала, т. е. в узкой области, состоящей из ламинарного подслоя и буферной зоны, где ламинарные и турбулентные законы течения сравнимы между собой.

В основной области течения (турбулентное ядро) можно пренебречь напряжением . Поэтому после подстановки (3.20) и (3.21) в (3.19) получим следующее исходное дифференциальное уравнение:

(3.22)

где - приведенное значение касательного напряжения; s1 —внешняя граница буферной зоны.

Прандтль ввел в уравнение (3.22) упрощение (физически, вообще говоря, ничем не обоснованное), положив правую часть уравнения равной . Но доказывается, что это упрощение вносит в конечный результат весьма небольшую погрешность.

Если, кроме того, ввести обозначение для динамической скорости на стенке канала , то уравнение (3.22) примет вид

Интегрируя это уравнение при условии , получим следующий универсальный закон распределения скорости:

(3.23)

В области, близкой к стенке канала (), профиль скорости отклоняется от распределения (3.23). Однако, учитывая, что отношение , можно в гидродинамических расчетах не принимать во внимание профиль скорости в пристенной области.

Многочисленные экспериментальные исследования показали, что логарифмическое распределение (3.23) достаточно хорошо описывает профили скоростей при турбулентных течениях различ­ных жидкостей в плоских и круглых каналах с гладкими и шероховатыми стенками вплоть до больших значений параметра Рейнольдса (за исключением, разумеется, узких пристенных об­ластей). Различия могут составлять лишь входящие в (3.23) параметры.

Тогда для практически гладких и вполне шероховатых каналов формула (3.23) переписывается в виде

(3.24)

При s = h - получим максимальные значения скоростей

(3.25)


С учетом (3.25) формулы (3.24) можно записать так:

(3.26)


Отсюда путем интегрирования легко получить среднюю по сечению скорость потока

(3.27)

Найдем коэффициент сопротивления по формуле (3.8):

Если здесь воспользоваться формулами (3.27), (3.25) и преобра­зованием

то получим универсальный закон сопротивления:

для гладкого канала:

(3.28)

для вполне шероховатого канала

(3.29)


Из формул (3.28) и (3.29) следует вывод: для гладких стенок коэффициент сопротивления λ зависит только от параметров Рейнольдса, а для вполне шероховатых — от отношения s0/h.

При переходном режиме, т. е. когда выполняется условие , коэффициент сопротивления зависит от Rе и s0/h.

Способ его определения в этом случае, основанный на экспери­ментальных данных. В практических расчетах обычно в формулах (3.24) и (3.25) константу 8,5 заменяют на 9 и соответственно в формуле (3.29) — константу 2,12 на 2,3. Эти константы для каналов с естественной шероховатостью устанавливаются опытным путем.

Примечание. Все приведенные в этом параграфе формулы могут быть использованы и при расчете характеристик течения жидкостей по наклонной плоскости или в длинном лотке (желобе), у которого ширина b днища во много раз больше глубины потока h. Для этого необходимо принять и заменить 2b на b, где — угол наклона плоскости (лотка) к горизонту.

§ 3. Ламинарное и турбулентное течение жидкостей в кольцевом канале

1. Для ньютоновской жидкости, используя соотношение (3.2) в системе уравнений (2.24), получим простейшее уравнение состояния

Из сравнения с решением (3.4) следует уравнение относительно скорости

Решение этого дифференциального уравнения, удовлетворяющее граничным условиям , имеет вид

(3.30)

где и — радиусы внутреннего и внешнего ци­линдров, ограничивающих кольцевой канал; ,


(3.31)


Нетрудно убедиться в том, что максимальная скорость жидкости будет при , а интегральные характеристики потока

(3.32)

где — параметр Рейнольдса для кольцевого канала.

Легко проверить, что при и поэтому .

Сравнивая полученные результаты с формулами (3.8), мо­жно сделать вывод, что кольцевой цилиндрический канал с отношением радиусов окружностей сечения

α> 0,3 и пло­ская щель с параметрами сечения 2h = R (1 - α) и b = πR (1+ α ) эквивалентны между собой в отношении интегральных ги­дродинамических характеристик при ламинарном течении нью­тоновской жидкости, т. е. величин vcp, Q, λ, ΔР. Одна­ко эти каналы имеют и существенное различие: переход от ламинарного режима течения к турбулентному в кольцевом канале наступает быстрее, чем в плоской щели, так как

Из формул (3.30) и (3.32) при вытекают известные формулы Хагена - Пуазейля, характеризующие течение жидкости в круглой трубе:


где параметр Рейнольдса для трубы.

2. Для ньютоновской жидкости Шведова — Бингама, если учесть характер распределения скорости (3.30) в кольцевом зазоре и соотношения (3.2) в формулах (2.26) и (2.27), получим

где α1R и α2R — радиусы цилиндрических поверхностей, огра­ничивающих жесткое ядро потока (рис. 8). Используя также соотношения (3.2), из (2.24) получим следующее уравнение состояния:

Из сопоставления с решением (3.4) имеем следующее дифференциальное уравнение относительно скорости:

(3.33)

а также уравнения относительно параметров α1 и α2 (безразмерные радиуса ядра потока) и ω = с / R:

(3.34)

Интегрируя уравнение (3.33) при граничных условиях v (α) = v (1) = 0, получим профиль скорости

(3.35)

а из уравнений (3.34) следует, что

(3.36)

Если в последнем соотношении (3.36) принять α1 = α и α2 = 1, то получим условие отсутствия движения

Следовательно, течение неньютоновской жидкости Шведова — Бингама в кольцевом канале возможно при условии

Из условия сопряжения скорости при вытекает третье уравнение относительно искомых параметров

(3.37)


которое с помощью соотношений (3.36) сводится к трансцендент­ному уравнению относительно одного из параметров ω2, α1 или α2, допускающему лишь численное решение.

Рис. 23. Характерный вид профиля скорости в кольцевом канале при течении ньютоновской жидкости Шведова-Бингама.

В табл. 1 приведены значения параметров α1, α2 и ω, полученные путем численного решения уравнений (3.36) и (3.37) на ЭВМ с точностью до 1%.

Таблица 1

ΔP0/ΔP α
0,45 0,55 0,65 0,75
α1 α2 ω α1 α2 ω α1 α2 ω α1 α2 ω
0,1 0,68 0,74 0,71 0,74 0,79 0,76 0,8 0,84 0,82 0,86 0,89 0,87
0,3 0,63 0,79 0,7 0,7 0,83 0,76 0,77 0,87 0,82 0,84 0,91 0,87
0,5 0,57 0,85 0,69 0,65 0,88 0,76 0,73 0,91 0,81 0,81 0,94 0,87
0,7 0,52 0,91 0,69 0,61 0,93 0,75 0,7 0,94 0,81 0,79 0,96 0,87
0,9 0,48 0,97 0,68 0,57 0,98 0,75 0,67 0,98 0,81 0,77 0,99 0,87
                         

Видно, что параметр очень слабо зависит от отношения Максимальное различие между значениями ω при и 0,9 составляет: 3,5% — при α = 0,45; 2%— при α = 0,55; 1% — при α = 0,65. Следовательно, параметр ω можно с высокой точностью вычислить по той же формуле, что и в задаче течения ньютоновской жидкости (3.31), т. е.

Решая систему уравнений (3.36), найдем с точностью до первого порядка относительно


Из сравнения с табличными значениями α1 и α2 легко убедиться, что погрешность такого приближения не более 4% для α1, и 2% для α2.

После подстановки полученных таким образом соотношений для параметров α1, α2 и ω в (3.35), интегрирования по кольцевому сечению и пренебрежения слагаемыми, содержащими величину в 3-й и 4-й степенях, получим следующий результат:

(3.38)

или при α > 0,3,

где — обобщенный параметр Рейнольдса: — приведенная вязкость жидкости Шведова - Бингама и - параметр Сен-Венана для кольцевого канала: - то же, что в (3.32).

Надо подчеркнуть, что приближенное решение (3.38) практически не отличается от точного при выполнении условия <0,5 или

Расчеты показывают, что параметр , является практически постоянной величиной, диапазон его изменения составляет от 0,87 до 0,88 при 0,1< α <0,9.

Сравнивая формулы (3.15) и (3.38), можно сделать полезный вы­вод: при течении жидкости Шведова — Бингама имеет место гидрав­лическая эквивалентность кольцевого цилиндрического канала и плоской щели, если ; α >0,3; 2h = R (1- α); b = πR (1+ α)и где - соответственно предельные на­пряжения сдвига для жидкостей в щелевом и кольцевом каналах. Легко заметить, что последнее требование опускается, если принять =3/4, т.е. . Аналогично первой задаче и здесь отношение параметров Рейнольдса Rе к* и Rещ равно 2.

В предельном случае, когда — приведенный радиус жесткого ядра, из решений (3.35) и (3.38) следуют основные расчетные формулы для течения неньютоновской жидкости Шведова — Бингама в круглой трубе радиуса R:

(3.39)

(3.40)

, — обобщенный параметр Рейнольдса, — приведенная вязкость жидкости Шведова - Бингама и — параметр Сен-Венана для трубы. Эти формулы известны как упрощенные формулы Букингама.

3. Для неньютоновской жидкости Освальда — Вейля, используя в последнем уравнении состояния (2.24) соотношения (3.2) и значение интенсивности скорости деформации сдвига [см. формулу (2.27)].


получим

(3.41)


где использованы те же обозначения, что и в предыдущих задачах.

Из сопоставления (3.41) и (3.4) приходим к дифференциаль­ному уравнению

где — некоторая характерная величина ско­рости.

Интегрируя последнее уравнение при граничных условиях v (α) = v (1) = 0, получим профиль скорости

(3.42)


Из условия сопряжения скорости при

(3.43)

определяется параметр ω.

В общем случае () интегралы в формуле (3.42) и в уравнении (3.43) нельзя представить элементарными функциями, и поэтому вычисления следует выполнять с помощью численного интегрирования на ПК. То же относится и к вычислению средней скорости потока

(3.44)

Численное решение уравнения (3.43) показывает, что параметр ω (безразмерная координата максимальной скорости) практически не зависит от реологической константы модели п и весьма точно может быть вычислен по формуле (3.31). Это иллюстрирует рис. 24, где показаны профили скорости для нескольких значений п, построенные по формулам (3.42) и (3.43) при α = 0,6.

Рис. 24. Профили скорости при α = 0,6 для степенной модели Освальда — Вейля:

1, 2, 3 - соответственно при n = 0,9; 0,7; 0,5.



Понравилась статья? Добавь ее в закладку (CTRL+D) и не забудь поделиться с друзьями:  



Сейчас читают про: