Полупроводниковые материалы

Полупроводники – это такие материалы, которые занимают промежуточное место по значению удельной проводимости между проводниками и диэлектриками.

Отличительной особенностью данных материалов является резкое изменение проводимости под действием температуры, освещенности, напряженности электрического поля.

К полупроводникам относятся как чистые элементы (Cr, Se, Ge), так и химические соединения (Cu2O, TiC, GaSb, AsSb, AlSb, InAs).

К настоящему времени существует около 12 полупроводниковых материалов.

Кристаллическая решетка построена по типу ковалентной связи, т.е. атомы имеют общие электроны.

Объяснение электропроводности полупроводников дает зонная теория твердых тел. Ее суть: в твердых телах электронные уровни существуют не по одному, а совокупностями или зонами энергетических уровней.

В любом электротехническом материале существует зона валентных электронов, которые связаны с атомами и зона проводимости, где электроны становятся свободными, не связанными с атомами и следовательно являются проводниками электрического тока.

В полупроводниках ток возникает тогда, когда часть электронов валентной зоны проходит в зону проводимости. Однако, чтобы такой переход осуществился, электроны должны преодолеть какой-то энергетический барьер ΔЕ, для чего электрону надо сообщить дополнительную энергию.

Запрещенная зона характеризуется количеством энергии, которую необходимо сообщить электрону, чтобы он из валентной зоны перешел в зону проводимости.

Рассмотрим энергетические диаграммы для проводников, полупроводников, диэлектриков.

Запрещенная зона у полупроводников меньше, чем у диэлектриков, и на ее преодоление необходимо меньше энергии. Запрещенная зона у проводников практически отсутствует, поэтому электроны из валентной зоны легко переходят в зону проводимости и ограниченно передвигаются в пределах проводника, создавая электронную проводимость.

Электрон, получивший достаточную энергию для преодоления запрещенной зоны, переходит в зону проводимости и образует в валентной зоне дырку.

Если эта дырка будет занята другим электроном валентной зоны, то на листе, где был этот электрон образуется новая дырка. Происходит перемещение дырок эквивалентно перемещению пол-ного заряда. Образуется дырочная проводимость.

Полупроводники, у которых электроны в зону проводимости поставляются только из валентной зоны, называются собственными проводниками.

Для увеличения электронной или дырочной проводимости в полупроводники вводят специальные примеси – инородные атомы.

Энергетические уровни примесных атомов располагаются в запрещенной зоне основного полупроводника.

Различают донорные примеси, энергетические уровни которых расположены вблизи зоны проводимости, и акцепторные примеси, уровни которых расположены вблизи валентной зоны.

Донорные примеси поставляют электроны в зону проводимости, образуя преимущественную электронную проводимость.

Полупроводники с электронной проводимостью называются полупроводниками n-типа.

Полупроводники, в которых существуют акцепторные примеси, создают в полупроводниках дополнительные энергетические уровни, на которые могут переходить электроны из валентной зоны, образуя там дырки.

Полупроводники с преимущественно дырочной проводимостью называются полупроводниками р-типа.

Для получения полупроводников с электронной проводимостью в них вводят вещества с валентностью на 1 больше валентности основного полупроводника.

Например GeIV→SbV

4 валентных электрона атома Sb устанавливают 4 парных ковалентных связей с атомом германия.

5-ый электрон не участвует в образовании парно-электронной связи, поэтому обладают более высокой энергией и может быть легко переведен в зону проводимости.

Для получения полупроводников с дырочной проводимостью (р-типа) в них вводят вещества с валентностью на 1 меньше валентности основного полупроводника, напрмиер GeIV→InIII

Каждый из электронов атомов индия устанавливает 3 ковалентных связи с атомами германия. Для связи с 4 электроном у индия электронов нет.

По этой причине электрон атома германия под небольшим энергетическим воздействием покидает свое место и образует там дырку. Легируя полупроводник таким образом, чтобы в одной области преобладали доноры, а в другой акцепторы, получают p-n переходы, на свойствах которых основана вся полупроводниковая электроника.

Полупроводниковые выпрямители образуются путем соединения в стык полупроводников с электронной (n) и дырочной (p) проводимостью, при этом на границе образуется p-n переход. В результате диффузии дырок и электронов навстречу друг другу граница полупроводников меняется. …

Если «+» подвести к области р-типа, а «-«к области n-типа (прямая полярность), то основные носители двигаются в направлении p-n перехода, легко переходят через него, образуя электрический ток. Если к области р-типа подвести «-«, а к области n-типа «+», то носители будут двигаться от направления p-n перехода и ток через p-n переход проходить не будет.

Для усиления тока применяют транзисторы (триоды). Полупроводник транзистора состоит из 3-х слоев.

Транзистор подключается к 2-м источникам тока; на один из p-n переходов подается напряжение прямой полярности. Этот переход называется эмиттерным. На второй переход подается напряжение обратной полярности (коллекторный). А средний полупроводник называется базой.

Полупроводники применяют для изготовления термисторов – полупроводниковых сопротивлений и фоторезисторов – полупроводниковых фотосопротивлений.

В термисторах используются свойства полупроводников увеличивать электропроводность при нагреве.

Фоторезисторы основаны на свойстве полупроводников увеличивать электропроводность под действием света.

Термисторы изготавливают из сернистых соединений (кадмия, висмута, свинца).





Подборка статей по вашей теме: