Для электрической цепи необходимо выполнить преобразование треуголькника R12 - R23 - R31 в звезду.

Добавляем к узлам подключения сопротивлений треугольником концы лучей подключения сопротивлений звездой.

Удаляем соединение сопротивлений треугольником. В результате остается подключение сопротивлений звездой. По формулам рассчитываются значения сопротивлений R1, R2, R3.

13. Простейший генератор переменного тока. Представляет собой проводник вращающийся в постоянном магнитном поле. Проводник пересекает линии магнитного поля и в нем индуктируется напряжение. Величина этого напряжения зависит от силы магнитного поля, скорости движения проводника в этом поле, длины проводника, а так же угла, под которым проводник пересекает линии магнитного поля.
Так как проводник вращаясь постоянно меняет угол под которым он пересекает линии магнитного поля, то ток в нем будет изменяться согласно синусоидальному закону. Это означает, что ток будет менять свое направление и значение. Промежутки времени через которые значения переменного тока повторяются называются периодом Т. Количество периодов за единицу времени называется частотой переменного тока n. По стандарту принята частота переменного тока в сети равна 50 герц. Это означает, что за 1 сек. ток меняет свое значение 50 раз, совершая при этом 50 полных периодов.
|
|
|
Переменный ток постоянно меняет свое значение и в каждый момент времени (мгновение) имеет мгновенное значение. Это значение с течением периода изменяется от минимума к максимальному значению (амплитудному) и обратно. Действия тока не определяют ни амплитудным, ни мгновенным значением. Для оценки действия, производимого переменным током, его сравнивают с действиями теплового эффекта постоянного тока. Для синусоидального переменного тока и напряжения, действующие значения меньше максимальных в раз. Электроизмерительные приборы показывают действующие значения тока или напряжения.
Активное и реактивное сопротивление переменному току. Так же как и постоянному току проводники оказывают переменному току электрическое сопротивление, называемое активным сопротивлением. Для переменного тока так же как и для постоянного справедлив законно Ома.
В цепи может присутствовать емкость и индуктивность, которые оказывают переменному току реактивное сопротивление, а в цепи с постоянным током реактивное сопротивление отсутствует. Следовательно для расчета электрической цепи с переменным током с помощью закона Ома необходимо учитывать как активное, так и реактивное: (емкостное и индуктивное) сопротивление.
Емкостью обладают конденсаторы включенные в цепь, а кроме того сама цепь может обладать собственной емкостью (фарад). Эта емкость оказывает сопротивление току называемое емкостным сопротивлением ХС. Емкостное сопротивление зависит от величины емкости С, а так же от частоты тока n. Чем больше емкость и частота тока, тем меньше сопротивление.
|
|
|
Индуктивностью обладает любая катушка включенная в цепь, будь то катушка реле или обмотка электродвигателя, оказывает сопротивление электрическому току, но в отличие от емкостного сопротивления при повышении частоты и индуктивности индуктивное сопротивление ХL увеличивается.
Как было бы логично предположить, для получения общего реактивного сопротивления необходимо сложить индуктивное и емкостное сопротивление, однако индуктивное и емкостное сопротивления оказывают противоположные влияния на ток (напряжения на катушке и на конденсаторе всегда действуют навстречу друг другу). Поэтому формула расчета реактивного сопротивления выглядит так:
Необходимо отметить, что на преодоление активного сопротивления током тратится энергия которая переходит в тепло и теряется безвозвратно, на преодоление же реактивного сопротивления энергия не тратится, а циркулирует переходя из одного вида в другой. На самом деле ток не может течь через конденсатор, поскольку между обкладками есть разрыв. Переменный ток только перезаряжает конденсатор. При заряде конденсатор оказывает сопротивление току, но при разряде он отдает энергию в цепь. Индуктивность оказывает сопротивление нарастающему току поскольку создается магнитное поле препятствующее его прохождению. При падении напряжения индуктивность будет поддерживать ток за счет ЭДС самоиндукции. Другой особенностью цепи переменного тока содержащего емкость и индуктивность является несовпадение фаз напряжения и тока. Ток отстает от напряжения. Это отставание характеризуется коэффициентом смещения фаз φ.
14.Простейший генератор переменного тока. Представляет собой проводник вращающийся в постоянном магнитном поле. Проводник пересекает линии магнитного поля и в нем индуктируется напряжение. Величина этого напряжения зависит от силы магнитного поля, скорости движения проводника в этом поле, длины проводника, а так же угла, под которым проводник пересекает линии магнитного поля.
Так как проводник вращаясь постоянно меняет угол под которым он пересекает линии магнитного поля, то ток в нем будет изменяться согласно синусоидальному закону. Это означает, что ток будет менять свое направление и значение. Промежутки времени через которые значения переменного тока повторяются называются периодом Т. Количество периодов за единицу времени называется частотой переменного тока n. По стандарту принята частота переменного тока в сети равна 50 герц. Это означает, что за 1 сек. ток меняет свое значение 50 раз, совершая при этом 50 полных периодов.
Переменный ток постоянно меняет свое значение и в каждый момент времени (мгновение) имеет мгновенное значение. Это значение с течением периода изменяется от минимума к максимальному значению (амплитудному) и обратно. Действия тока не определяют ни амплитудным, ни мгновенным значением. Для оценки действия, производимого переменным током, его сравнивают с действиями теплового эффекта постоянного тока. Для синусоидального переменного тока и напряжения, действующие значения меньше максимальных в раз. Электроизмерительные приборы показывают действующие значения тока или напряжения.
Активное и реактивное сопротивление переменному току. Так же как и постоянному току проводники оказывают переменному току электрическое сопротивление, называемое активным сопротивлением. Для переменного тока так же как и для постоянного справедлив законно Ома.
|
|
|
В цепи может присутствовать емкость и индуктивность, которые оказывают переменному току реактивное сопротивление, а в цепи с постоянным током реактивное сопротивление отсутствует. Следовательно для расчета электрической цепи с переменным током с помощью закона Ома необходимо учитывать как активное, так и реактивное: (емкостное и индуктивное) сопротивление.
Емкостью обладают конденсаторы включенные в цепь, а кроме того сама цепь может обладать собственной емкостью (фарад). Эта емкость оказывает сопротивление току называемое емкостным сопротивлением ХС. Емкостное сопротивление зависит от величины емкости С, а так же от частоты тока n. Чем больше емкость и частота тока, тем меньше сопротивление.
Индуктивностью обладает любая катушка включенная в цепь, будь то катушка реле или обмотка электродвигателя, оказывает сопротивление электрическому току, но в отличие от емкостного сопротивления при повышении частоты и индуктивности индуктивное сопротивление ХL увеличивается.
Как было бы логично предположить, для получения общего реактивного сопротивления необходимо сложить индуктивное и емкостное сопротивление, однако индуктивное и емкостное сопротивления оказывают противоположные влияния на ток (напряжения на катушке и на конденсаторе всегда действуют навстречу друг другу). Поэтому формула расчета реактивного сопротивления выглядит так:
Необходимо отметить, что на преодоление активного сопротивления током тратится энергия которая переходит в тепло и теряется безвозвратно, на преодоление же реактивного сопротивления энергия не тратится, а циркулирует переходя из одного вида в другой. На самом деле ток не может течь через конденсатор, поскольку между обкладками есть разрыв. Переменный ток только перезаряжает конденсатор. При заряде конденсатор оказывает сопротивление току, но при разряде он отдает энергию в цепь. Индуктивность оказывает сопротивление нарастающему току поскольку создается магнитное поле препятствующее его прохождению. При падении напряжения индуктивность будет поддерживать ток за счет ЭДС самоиндукции. Другой особенностью цепи переменного тока содержащего емкость и индуктивность является несовпадение фаз напряжения и тока. Ток отстает от напряжения. Это отставание характеризуется коэффициентом смещения фаз φ.
|
|
|
15. При расчете электрических цепей часто приходится складывать или вычитать величины токов или напряжений, являющиеся синусоидальными функциями времени. Графические построения или тригонометрические преобразования в этом случае могут оказаться слишком громоздкими. Для упрощения расчетов пользуются либо векторным представлением тригонометрических функций, либо комплексным представлением.
Задача упрощается, если представить наши синусоидальные функции в векторной форме. Имеем синусоидальную функцию
. Известно, что проекция отрезка, вращающегося вокруг оси с постоянной угловой скоростью, на любую линию, проведенную в плоскости вращения, изменяется по синусоидальному закону.
Пусть отрезок прямой длиной Im начинает вращаться вокруг оси " 0 ", ось направлена на нас из толчки “ 0 ”, из положения, когда он образует с горизонтальной осью угол φ, и вращается против часовой стрелки с постоянной угловой скоростью ω. Проекция отрезка на вертикальную ось в начальный момент времени
. Когда отрезок повернется на угол α1, проекция его
. Откладывая углы α1, α2,... на горизонтальной оси, а проекции отрезка прямой - на вертикальной оси, получим ряд точек синусоиды (рис. 3.1).

Рисунок 3.1. Вектор на координатной плоскости, соответствующий синусоидальной зависимости тока i с амплитудой Im от времени t с частотой ω и начальной фазой φ.
Представим синусоидальные токи i1 и i2 в виде двух радиус - векторов, длина которых равна в соответствующем масштабе амплитудам соответствующих переменных токов I1m и I2m. Эти векторы расположены в начальный момент времени под углами φ1 и φ2 относительно горизонтальной оси. Сложим геометрически отрезки I1m и I2m. Получим отрезок, длина которого равна амплитудному значению результирующего тока I3m. Отрезок расположен под углом φ3 относительно горизонтальной оси. Все три отрезка вращаются вокруг оси 0 с постоянной угловой скоростью ω. Проекции отрезков на вертикальную ось изменяются по синусоидальному закону. Будучи остановленными для рассмотрения, данные отрезки образуют векторную диаграмму (рис. 3.2).Векторная диаграмма - это совокупность векторов, изображающих синусоидальные напряжения, токи и ЭДС одинаковой частоты.

Рисунок 3.2. Сложение в векторной форме синусоидальных токов с амплитудами I1m и I2m и начальными фазами φ1 и φ2 и результирующий ток I3m с начальной фазой ψ3. Все три тока колеблются с одной и той же частотой ω.
Необходимо отметить, что напряжение, ток и ЭДС - это скалярные, а не векторные величины. Мы представляем их на векторной диаграмме в виде не пространственных, а временных радиус - векторов, вращающихся с одинаковой угловой скоростью, длины этих векторов равны амплитудам соответствующих величин (тока, напряжения, ЭДС). Положительным считается направление вращения векторов против часовой стрелки.
17.
| Определите закон Ома для цепи переменного тока, содержащей R,L и С: | |
| Ответ | |
| Физическая энциклопедия Т.3, стр. 404 - 405 | ОМА ЗАКОН - линейная связь между силой тока I на участке электрич. цепи и приложенным к этому участку напряжением U (интегральная форма О. з.) или между плотностью тока j и напряжённостью электрич. поля в проводнике (дифференц. форма О. з.). О. з. в интегральной форме установлен в 1826 Г. Омом (G. Ohm): U = RI, (1) где R - коэф., зависящий от материала проводника, его геометрии, темп-ры и называемый омическим сопротивлением или просто сопротивлением. Соотношение (1) описывает участок электрич. цепи в отсутствие источников электродвижущей силы. Чтобы в замкнутой системе проводников (электрич. цепи) мог течь стационарный ток, в этой системе должны быть участки, где действуют электрич. поля неэлектростатич. происхождения. Эти участки наз. источниками эдс. Если - эдс, действующая в неразветвлённой цепи, то вместо (1) имеем где R - полное сопротивление замкнутой цепи, включающее внутр. сопротивление источника эдс. Это соотношение паз. О. з. для замкнутой цепи. Обобщение (2) на случай разветвлённых цепей см. в ст. Кирхгофа правила. О. з. обобщается на случай переменных (меняющихся по гармонич. закону) квазистационарных токов и электрич. цепей, содержащих наряду с омическим (или, как говорят в таких случаях, активным) сопротивлением ещё и электрич. ёмкости С и индуктивности L. В этом случае удобно записывать связи между силой тока I и напряжением U в комплексной форме, понимая под истинными значениями этих величин Re I и Re U соответственно. Введениекомплексного сопротивления, или импеданса, приводит к О. з. для цепи переменного тока: U = ZI [напряжение и ток зависят от времени по закону ехр ]. Мнимая часть в ф-ле (3) наз. реактивным сопротивлением. Правила Кирхгофа остаются в силе и для цепи, включающей наряду с активным (омическим) и реактивные сопротивления; при этом вместо омических сопротивлений участка цепи следует подставить соответствующий импеданс. |
| Трофимова Т.И. Курс физики, 2001 г., стр. 217 | Из прямоугольного треугольника получаем откуда амплитуда силы тока имеет значение (149.10) совпадающее с (147.15). |
| Википедия | Если ток является синусоидальным с циклической частотой , а цепь содержит не только активные, но и реактивные компоненты (ёмкости, индуктивности), то закон Ома обобщается; величины, входящие в него, становятся комплексными: где:
подбором такой что Тогда все значения токов и напряжений в схеме надо считать как Если ток изменяется во времени, но не является синусоидальным (и даже периодическим), то его можно представить как сумму синусоидальных Фурье-компонент. Для линейных цепей можно считать компоненты фурье-разложения тока действующими независимо. Также необходимо отметить, что закон Ома является лишь простейшим приближением для описания зависимости тока от разности потенциалов и от сопротивления и для некоторых структур справедлив лишь в узком диапазоне значений. Для описания более сложных (нелинейных) систем, когда зависимостью сопротивления от силы тока нельзя пренебречь, принято обсуждатьвольт-амперную характеристику. Отклонения от закона Ома наблюдаются также в случаях, когда скорость изменения электрического поля настолько велика, что нельзя пренебрегать инерционностью носителей заряда. |
- эдс, действующая в неразветвлённой цепи, то вместо (1) имеем
где R -
приводит к О. з. для
]. Мнимая часть в ф-ле (3) наз. реактивным сопротивлением. Правила Кирхгофа остаются в силе и для цепи, включающей наряду с активным (омическим) и реактивные сопротивления; при этом вместо омических сопротивлений участка цепи следует подставить соответствующий импеданс.
откуда амплитуда силы тока имеет значение
(149.10) совпадающее с (147.15).
, а цепь содержит не только активные, но и реактивные компоненты (ёмкости, индуктивности), то закон Ома обобщается; величины, входящие в него, становятся комплексными:
где:
подбором такой
что
Тогда все значения токов и напряжений в схеме надо считать как
Если ток изменяется во времени, но не является синусоидальным (и даже периодическим), то его можно представить как сумму синусоидальных Фурье-компонент. Для линейных цепей можно считать компоненты фурье-разложения тока действующими независимо. Также необходимо отметить, что закон Ома является лишь простейшим приближением для описания зависимости тока от разности потенциалов и от сопротивления и для некоторых структур справедлив лишь в узком диапазоне значений. Для описания более сложных (нелинейных) систем, когда зависимостью сопротивления от силы тока нельзя пренебречь, принято обсуждатьвольт-амперную характеристику. Отклонения от закона Ома наблюдаются также в случаях, когда скорость изменения 





