double arrow

Декомпозиция временных рядов


Основным положением, на котором базируется использование временных рядов для прогнозирования, является то, что факторы, влияющие на полученные данные, воздействовали некоторым образом на наблюдаемый процесс в прошлом и настоящем, и предполагается, что они будут действовать схожим образом и в не очень далеком будущем. Поэтому основной целью анализа временных рядов будет разложение их на составные компоненты (декомпозиция) с целью прогноза дальнейшего поведения системы и выработки рациональных управленческих решений.

Двумя простейшими моделями, в которых переменная временного ряда У раскладывается на трендовую, циклическую, сезонную и нерегулярную компоненту, являются аддитивная модель и мультипликативная.

Модель, которая трактует каждое значение временного ряда как сумму указанных выше компонент, называется аддитивной. Согласно этой модели любое значение временного ряда представляется в виде:

(11.1)

где - значение временного ряда, а - соответственно значения трендовой, циклической, сезонной и нерегулярной компонент в любой точке ряда.

Аддитивная модель применима в тех случаях, когда анализируемый временной ряд имеет приблизительно одинаковые изменения на протяжении всей длительности ряда.




Наиболее фундаментальной является классическая мультипликативная модель временного ряда, широко используемая при анализе ежемесячных, ежеквартальных и ежегодных данных и потому чаще всего применяемая в экономических исследованиях.

В классической мультипликативной модели временных рядов определяется, что наблюдаемое значение в любой точке временного ряда является произведением трех факторов — тренда, циклической и нерегулярной компонент (в случае короткошаговых наблюдений — четырех, здесь добавляется еще и сезонная компонента), и любое значение ряда может быть представлено в виде:

(11.2)

где - значение временного ряда, а - соответственно значения трендовой, циклической, сезонной и нерегулярной компонент в любой точке ряда.







Сейчас читают про: