Полифенольные соединения

Одними из важных компонентов химического состава ячменя и хмеля, существенно влияющих на процесс приготовления солода и пива являются полифенолы. При солодоращении они являются ингибиторами прорастания ячменя, в пивоварении отрицательно влияют на вкус, цветность и коллоидную стойкость пива.

Практически все полифенолы – активные метаболиты клеточ­ного обмена, они играют существенную роль в различных физиоло­гических процессах – фотосинтезе, дыхании, росте, формирова­нии устойчивости растений к инфекционным болезням.

Ранее эти вещества называли танинами или дубильными веществами, однако в настоящее время считается общепринятым название «полифенолы». Прежнее название относится лишь к от­дельным группам полифенолов.

Примерно 80 % полифенолов сусла происходят из солода и лишь около 20 % вносятся с хмелем. В зерне эти вещества находятся, главным образом, в алейроновом слое и при его помоле попадают во фракцию крупки. Наиболее весомая часть полифенолов ячменя представлена антоцианогенами. В эндосперме ячменя и солода антоцианогены ас­социированы с гордеином, причем отмечена обратная корреляция: чем больше в зерне белка, тем меньше в гордеине антоцианогенов. Именно эти полифенолы отрицательно влияют на коллоидную стойкость, стабильность запаха, вкуса, пенистые свойства и цвет пива. Поэтому даже низкобелковистый ячмень может давать пиво с плохой коллоидной стойкостью из-за высокого содержания антоцианогенов.

Полифенолы присутствуют в пиве в виде веществ различного строения. Примерно 8 % полифенолов имеют молекулярную массу менее 500, 90 % веществ имеют молекулярную массу от 500 до 10 000 и только следы – больше 10 000. Иногда для оценки качественного состава полифенолов пива ис­пользуют термин «индекс полимеризации». Это отношение общего количества полифенолов к количеству антоцианогенов.

По современным представлениям полифенолы солода и хмеля в значительной мере определяют вкус, цвет, пенистые свойства пива, а также склонность готового напитка к коллоидному помутнению. Участие полифенольных веществ в образовании коллоидной мути пива было установлено еще в 1893 г. Брауном, впервые выделившим коллоидную муть пива и показавшим, что она состоит из полифе­нолов и белков.

Полифенольная фракция коллоидной мути включает в себя антоцианогены, производные лигнина, сложные эфиры простых фе­нолов. Соединения белков с полифенольными веществами имеют­ся в зерне ячменя и дополнительно образуются в процессе затира­ния зернопродуктов, фильтрования и кипячения сусла. Качество используемого сырья и условия проведения отдельных стадий при­готовления пива во многом определяют степень полимеризации фенольных веществ, а значит, и их влияние на качество пива.

В настоящее время полифенольные вещества классифицируются следующим образом.

Фенольными веществами называется ряд веществ, содержащих в своей структуре ароматические кольца с гидроксильной группой, а также их функциональные производные. Фенольные соединения, в ароматическом кольце которых имеется более одной гидроксиль­ной группы, именуют полифенолами.

Известно более 1000 разнообразных природных фенольных со­единений.

По химической структуре все фенольные соединения можно разделить на три основные группы: с одним ароматическим коль­цом, с двумя ароматическими кольцами, полимерные соединения.

В свою очередь, фенольные соединения с одним ароматическим коль­цом делятся на:

1) простые фенолы (С6);

2) фенолкарбоновые кислоты;

3) кумарины и оксикоричные кислоты (С6 - С3).

Простые фенольные соединения с одним ароматическим коль­цом представлены: пирокатехином (1,2-диоксибензолом), резор­цином (1,3-диоксибензолом), гидрохиноном (1,4-диоксибензолом), флюроглюцином (1,3,5-триоксибензолом), оксигидрохиноном (1,3,4-триоксибензолом), пирогаллолом (1,2,3-триоксибензолом).

Группа фенолкарбоновых кислот представлена оксибензойными кислотами: протокатеховой, галловой, ванилиновой, n-оксибензойной и сиреневой.Они обычно присутствуют в связанной с другими соединениями форме. Например, галловая кислота в рас­тениях находится часто в виде м -дигалловой кислоты.

Третья группа фенолов с одним ароматическим ядром разделя­ется на две подгруппы: оксикоричные кислоты и кумарины. В рас­тениях часто встречаются эфиры оксикоричных кислот с алифатическими и гидроароматическими кислотами, например, хлорогеновая кислота.

Кумарины (производные коричной (кумариновой) кислоты) придают пиву запах свежескошенной травы и играют роль ингибиторов при проращивании ячменя. При декарбоксилировании кумариновой и феруловой кислот, которое осуществляют дрожжи Saccharomyces cerevisiae, происходит образование 4-этилгваякола и 4-винилгваякола. Эти соединения придают пиву фенольный привкус.

Фенольные соединения с двумя ароматическими кольцами представлены тремя типами соединений (С6 - С3 - С6):

1) флавоноидами;

2) изофлавоноидами;

3) ротеноидами.

Молекула флавоноида содержит два бензольных кольца и одно гетероциклическое кислородосодержащее пирановое или пироновое кольцо. Если в молекуле флаваноида фенольная группа присоединена к третьему атому углерода, то образуется изомерное соединение – изофлаваноиды.

Ротеноиды содержат тетрациклическое кольцо из 16 углеродных атомов, состоящее из колец А, В, С, D.

Флавоноиды по степени окисленности (или восстановленности) гетероциклического фрагмента могут быть разбиты на 6 основных подгрупп:

1) Катехины;

2) Лейкоантоцианы;

3) Антоцианы;

4) Флаваноны;

5) Флаванолы;

6) Флавоны.

К флаваноидам примыкают халконы, дигидрохалконы и ауроны.

Разнообразие флаваноидов достигается за счет различного замещения функциональных групп в ароматических кольцах А и В (например, в разных положениях могут присоединяться группы –ОН, –ОСН3, –СН3), а также наличия ассиметрических атомов углерода и способности образовывать гликозиды с разными моно-, ди- и трисахаридами.

Катехины – наиболее восстановленная группа флавоноидов, которая в значительных количествах присутствует в ячмене и солоде. Это бесцветные вещества, склонные к полимеризации и легко окисляющиеся как путем аутоксидации (самоокисления), так и путем ферментативного окисления с помощью оксидоредуктаз, например, полифенолоксидазы. При этом образуется флобафен красного цвета, увеличивающий цветность сусла и пива.

Лейкоантоцианы содержатся в ячмене в большом количестве. Очень неустойчивые соединения и окисляются значительно легче катехинов. Они растворяются в воде и легко конденсируются с катехинами с образованием димеров-проантоцианидинов. При кислотной обработке легко переходят в окрашенные антоцианидины. К ним относятся антоцианогены - интенсивно окрашенные соединения, в природе встречающиеся как красящие вещества цветов. Следует отметить, что ячмень является единственным злаком, содержащим антоцианогены, которыми в большой мере обусловлено качество пива (его коллоидно-химическая стойкость).

Антоцианы – красящие вещества, содержащиеся в растениях. Окрашивают плоды, листья, лепестки цветов в самые разнообразные оттенки – от розового до черно – фиолетового. Все антоцианы содержат в гетероциклическом кольце четырехвалентный кислород (оксоний), благодаря чему легко образуют соли, например хлориды.

Флаваноны – очень нестойкие соединения. В состав этой группы соединений входит нарингин – компонент горечи цитрусовых, особенно плодов грейпфрута.

Флаванолы – вещества желтой окраски. Образуют большое число различных гликозидов, чаще всего производных следующих агликонов: кемпферола, кверцетина и мирицетина, которые в значительных количествах находятся в хмеле.

Флавоны – желтые красящие вещества, из которых наиболее распространены алигенин, лутеолин, трицин.

Образование флавоноидных соединений – характерная особен­ность высших растений. Ни грибы, ни лишайники не способны синтезировать флавоноиды. Все флавоноиды, кроме катехинов, встречаются как в свободном состоянии, так и в виде гликозидов. В качестве углеводной части могут быть моно-, ди- и трисахариды: глюкоза, ксилоза, рамноза, арабиноза, рутиноза (рамноза-α-1,6-глюкоза), софороза (глюкоза-β-1,2-глюкоза) и т.д. (не менее 10).

Гликозиды существуют в двух формах: О-гликозиды и С-глико-зиды.

О-гликозиды – обычная форма флавоноидных гликозидов. Са­мую большую группу составляют флавоновые гликозиды, в которых сахар находится в третьем положении углерода, наиболее часто встречаются 3,7-дигликозиды.

С-гликозиды – это соединения, в которых сахар присоединен непосредственно к ядру флавона через атом углерода в восьмом по­ложении. У этих гликозидов агликоны почти исключительно при­надлежат к классу флавонов.

Гликозирование флавоноидных пигментов цветов имеет суще­ственное значение. С одной стороны, это обеспечивает их устойчи­вость к свету и действию ферментов, с другой стороны, это улучша­ет растворимость пигментов в клеточном соке.

Полимерные фенольные соединения подразделяются на следующие подгруппы:

1) Лигнин;

2) Дубильные вещества;

3) Меланины.

Лигнин содержится в одревесневших растительных тканях наря­ду с целлюлозой и гемицеллюлозой. Это аморфное, нерастворимое в воде вещество, лишь 5 - 10 % которого растворяется в органичес­ких растворителях. Лигнин участвует в создании опорных элемен­тов растительных тканей. По своей химической природе лигнин – трехмерный полимер фенольной природы. При окислении нитро­бензолом в щелочной среде лигнин расщепляется с образованием ароматических альдегидов: ванилина, сиреневого альдегида и n-ок-сибензальдегида.

Дубильные вещества – условное название группы растительных полифенолов, имеющих молекулярную массу 1000 - 5000. Природ­ные дубильные вещества делят на две большие группы: гидролизуемые и негидролизуемые (конденси­рованные).

Конденсированные дубильные вещества в большей части явля­ются полимерами катехинов или лейкоантоцианов либо их сополи­мерами и сконцентрированы в семенной оболочке. Они обладают способностью осаждать белки, что приводит к образованию опалесценции и являются основными фенольными компонентами коллоидного осадка в пиве.

Гидролизуемые дубильные вещества в отличие от конден­сированных при обработке разбавленными кислотами распадаются с образованием более простых соединений. Конденсированные дубильные вещества под влиянием кислот увеличивают свою массу и образуют нерастворимые, аморфные, соединения.

В зависимости от строения образующихся при гидролизе пер­вичных фенольных соединений различают галловые и эллаговые гидролизуемые дубильные вещества. Нефенольным компонентом в обеих группах являются моносахариды, обычно глюкоза.

Гал­ловые дубильные вещества иногда называют галлотанинами. Это сложные эфиры галловой или дигалловой кислоты с глюкозой. Причем к молекуле глюкозы может присоединяться разное количе­ство (до 5) молекул галловой (или дигалловой) кислоты. Эллаговые дубильные вещества, или эллаготанины, при гидролизе дают в ка­честве фенольных остатков эллаговую кислоту, а в качестве сахари­стого остатка - чаще глюкозу. Эти вещества имеют ярко выраженный вяжущий вкус и при кипячении сусла с хмелем участвуют в образовании бруха.

При ферментативном окислении дубильные вещества превра­щаются в вещества красного и коричневого цвета - флобафены. Они нерастворимы в холодной воде, но растворяются в горячей, ок­рашивая настои и отвары в красно-бурые тона.

Меланины – фенольные полимеры, строение которых до кон­ца не выяснено. Они окрашены в черный или коричнево-черный цвет. При щелочном расщеплении меланины образуют пирокате­хин, протокатеховую кислоту и небольшое количество 5,6-диоксииндола.

К фенольным соединениям относится тестин, состоящий из белка и дубильных веществ. В том случае, когда концентрация тестина в пиве превышает 0,1% происходит ухудшение вкуса и изменение цвета пива. Тестин, так же как и другие фенольные соединения, растворяется в слабых растворах щелочей и может быть частично удален из оболочек во время замачивания ячменя.

Таким образом, рассмотрение химического состава и строения фенольных соединений, участвующих в пивоварении, свидетель­ствует о чрезвычайном многообразии этих веществ. Содержание полифенолов в ячмене колеблется от 0,1 до 0,3% и зависит от сорта, климатических условий, степени зрелости. Чтобы избежать помутнений, вызываемых полифенолами, необходимо проводить мероприятия по удалению указанных веществ до розлива пива. Более того, в настоящее время, проводятся селекционные работы по выведению сортов ячменя, не содержащих антоцианидинов (сорт Caminant).


Понравилась статья? Добавь ее в закладку (CTRL+D) и не забудь поделиться с друзьями:  




Подборка статей по вашей теме: