Беспроводные оптические каналы

Для стационарных каналов оптоволоконный кабель не имеет конкурентов. Но при формировании каналов в городе, где требуется лицензия на прокладку и разрешение для использования канализации, все становится не так просто. При расстояниях до 1-5 км во многих случаях становятся привлекательны каналы с открытым лазерным лучом.

Следует иметь в виду, что лазерному лучу из-за поглощения в атмосфере проще преодолеть расстояние от Земли до Луны, чем от ТВ-башни в Останкино до шуховской башни..

Ниже приведена таблица, где сравниваются параметры различных беспроводных систем.

(GBL - Communication by light GmbH https://www.cbl.de)

Беспроводные телекоммуникационные системы
  Широкополосные системы Оптические каналы Радиорелейные системы
Скорость передачи Несколько Мбит/c ≥ 155 Мбит/c До 155 Мбит/c
Максимальное расстояние Несколько км ≤ 2 км ≤ 50 км
Угроза подключения высокая Крайне высокая Очень высокая
Проблемы интерференции имеются отсутствуют малые
Интерфейсы 10/100 MbpsEthernet E1, волоконный стандарт, FE, GE E1, STM-1 Eth, FE
Точность настройки малая Очень высокая средняя
Разрешение на применение Лицензия не требуется Лицензия не требуется Нужна лицензия PTT
Относительная стоимость ≥ 5200 € ≥ 6000 € ≥ 26000 €

В 2008 году начал распространяться новый протокол передачи данных по оптоволокну FICON (Fiber Connection), разработанный компанией IBM и уже внедренный в свои изделия фирмой CISCO. Максимальная скорость передачи в этом протоколе составляет 4 Гбит/c. Максимальное расстояние передачи может достигать 300 км.

Кабели оптические.

Задуманы оптические кабели очень давно, но не было подходящих материалов. Наконец, в начале 70-х годов, после многолетних и трудоемких поисков, было создано волокно с потерями света при передаче менее 20 дБ/км.

Сначала были проложены соединительные линии между АТС в городах, а затем началось строительство междугородных и международных оптических кабельных магистралей. В последнее десятилетие массово строят морские и океанские межматериковые линии, причем Россия принимает в этом деле достаточно большое участие, чему наилучший пример – Транссибирская оптическая магистраль.

Рис. 2.1. Типичный световод.

Типичный световод состоит из сердцевины и оболочки. У сердцевины показатель преломления чуть-чуть больше, чем у оболочки, из-за чего световой луч испытывает практически полное внутреннее отражение на границе сердцевина-оболочка. Выполняется и сердцевина, и оболочка из кварцевого стекла. Поверх световода обычно накладывают несколько слоев защитных покрытий, улучшающих его механические и оптические характеристики. Световод со всеми этими покрытиями называют оптическим волокном. Делают световоды из полимерных материалов.

Конструкции световодов и оптических волокон очень много, но основных типов два: многомодовый и одномодовый. Диаметр сердцевины у многомодовых волокон в десятки раз превышает длину волны передаваемого излучения, из-за чего по волокну распространяется несколько типов волн (мод). Окна прозрачности кварца, из которого изготовлены световоды, находятся в области длин волн 0,85; 1,3; 1,55 мкм, а стандартные диаметры сердцевины многомодовых волокон - 50 и 62,5 мкм, вот и сравните!

У одномодового волокна диаметр сердцевины находится обычно в пределах 5-10 мкм (АТ&Т, например, стандартизировала 8,3 мкм). Это волокно называют одномодовым в соответствии со сложившейся традицией, т.е. условно: для того, чтобы по волокну передавался только один тип волны (одна мода), размер сердцевины должен быть еще меньше. Диаметр кварцевой оболочки световода тоже стандартизован и составляет 125 мкм.

Для связи на короткие расстояния чаще всего используют многомодовые волокна - они все же проще в монтаже и эксплуатации. На дальние расстояния употребляют одномодовые волокна - они имеют значительно меньшее затухание и уменьшенную дисперсию светового импульса, хотя их сложнее и монтировать, и эксплуатировать.

Параметр «затухание» характеризует ослабление мощности светового потока при передаче по оптическому волокну. Он подобен параметру электрических кабелей и также измеряется в дБ/км. Дисперсия импульса - это его «размывание» при распространении по оптоволокну. Поначалу высокий и стройный, импульс при передаче оседает и толстеет. Если два импульса расположены рядом, то по мере прохождения по волокну из-за дисперсии они наползают друг на друга и в конце концов перестают различаться Дисперсия импульса зависит от затухания, микронеоднородностей, микротрещин, от внутренней структуры материала световода и еще от многих факторов.

Рис. 2.2. Конструкция сложного оптического кабеля.

Световые импульсы образуются при модуляции источника излучения - лазера или светодиода. Для передачи от источника к волокну очень важна апертура, т. е. действующий раскрыв на входе световода. Апертура зависит от размера сердцевины волокна и от согласования источника с оптоволокном. При неудачном согласовании лишь небольшая доля мощности от передатчика попадает в световод, а остальная энергия отражается. Наоборот, если апертура хорошо согласована с источником, то такое сочетание очень эффективно: вся энергия попадает в световод.

Голый световод плохо переносит всяческие воздействия - изгибы растяжения, влагу, и поэтому его покрывают защитными материалами (лаками, пластиками), окружают кевларовыми волокнами. И хотя сам световод имеет диаметр 125 мкм, с покрытиями его размер достигает 0,5 мм и более. В таком виде оптоволокно уже можно помещать в кабель теперь оно сможет противостоять внешним воздействиям. При конструировании кабеля принимают еще дополнительные меры по защите волокон: упрятывают оптические волокна в толстые пластиковые трубки, рядом укладывают упрочняющие стальные и пластмассовые стержни, а весь внутренний объем кабельной оболочки часто заполняют гидрофобным (водоотталкивающим) материалом или толстыми и прочными пучками пластиковых волокон.

Конструкции оптических кабелей различны. Встречаются кабели с небольшим количеством волокон. Но чаще они представляют собой сложные агрегаты, содержащие множество оптических волокон, помещенных в специальные модули, дополненные еще различными несущими, защитными, питающими и другими элементами (рис. 2.3) Все зависит от назначения оптического кабеля. Есть конструкции, где оптические волокна лежат свободно в трубках и "звездочках", но есть и такие, где они крепко зажаты в прозрачной ленте из пластмассы. В линиях связи широко применяются оба типа кабеля.

Рис. 2.3. Конструкция оптического кабеля.

Крайне важна заделка оптоволокна в разъем - ведь от этого зависит эффективность перехода световых импульсов в местах соединений. Поэтому во всех инструкциях по волоконно-оптическим линиям связи на подготовку и заделку оптических разъемов обращают особое внимание. Заделанный в разъеме конец оптоволокна герметизируют клеем, эпоксидной смолой или другим заполнителем. Затем пристальное внимание обращается обычно на радиус изгиба оптического кабеля. При недостаточно большом радиусе изгиба увеличивается затухание тракта, а при слишком маленьком возможны поломки световедущих частей оптических кабелей.

Рис. 2.4. Заделка оптоволокна в разъем.

Операция по изгибанию оптического кабеля выполняется не как с медными кабелями (просто в пространстве), а на специальной полке, где аккуратно изогнутые кольца и петли из оптического кабеля тщательно закрепляют. Само собой разумеется, что и соединители для оптических линий изготавливают более тщательно, чем обычные, а заделку в них оптоволокна выполняют часто под микроскопом, оснащенным хорошим дисплеем.

Итак, теперь мы представляем себе, что такое оптическое волокно и оптический кабель. Каковы же их возможности по передаче информации? Уже давно и успешно по оптоволокну передают потоки в 155 Мбит/с - в системах связи это первая ступень синхронной цифровой иерархии. Недавно освоили вторую ступень - 622 Мбит/с и быстро осваивают третью - 2,5 Гбит/с (в России такая оптическая линия намечена между Москвой и Петербургом). Поговаривают и о четвертой ступени (10 Гбит/с), но действующих линий с таким темпом нет.

31. Антипомпажные регуляторы.

Помпа́ж (фр. pompage) — неустойчивая работа компрессора, вентилятора или насоса, характеризуемая резкими колебаниями напора и расхода перекачиваемой среды.

Для обеспечения нормальной работы компрессора и устранения явления помпажа применяются автоматические регуляторы - антипомпажные устройства, которые поддерживают постоянное давление в сети трубопроводов.

Помпаж представляет собой срыв потока газа в компрессоре с потерей динамической устойчивости. Возникающие при этом колебания расхода и давления газа могут привести к разрушению оборудования. Явление помпажа возникает, когда давление на выходе нагнетателя высокое, а расход газа через него – низкий. Для защиты центробежного нагнетателя от помпажа используется перепуск газа с выхода компрессора на его вход в количестве, необходимом для избежания помпажа. В системе антипомпажного регулирования и защиты ДКС «Западный Шатлык» используется регулирующий клапан фирмы Mokveld (Голландия).

Запас газодинамической устойчивости нагнетателя может быть оценен по положению его рабочей точки в координатах расход – степень сжатия. В этих же координатах изображается граница помпажа – линия, при нахождении рабочей точки левее которой (т.е. при низких расходах), происходит помпаж. Правее линии помпажа на заданном расстоянии, характеризующем запас по помпажу, находится линия регулирования – линия, левее которой рабочая точка находиться не должна.

Задача антипомпажного регулирования и антипомпажной защиты включает в себя поддержание запаса по помпажу не ниже заданного, обнаружение помпажа и вывод нагнетателя из зоны помпажа. Поддержание запаса по помпажу достигается путем своевременного частичного открытия антипомпажного клапана при достижении рабочей точкой линии регулирования или быстром приближении к ней. При этом рабочая точка, если она достигает линии регулирования, удерживается на ней. Степень открытия антипомпажного клапана определяется контуром антипомпажного регулирования. Возможно применение нелинейных законов регулирования.

Для устранения помпажа используется частичное или полное открытие антипомпажного клапана. Затем происходит плавное закрытие регулирующего клапана и вывод рабочей точки нагнетателя на линию регулирования. Если в течение заданного времени устранить помпаж при помощи перепуска газа не удается, система антипомпажной защиты выдает в САУ ГПА команду аварийного останова агрегата.

Общестанционный регулятор обеспечивает поддержание заданного давления на выходе КС как при работе одного ГПА, так и при совместной работе двух ГПА. Выходными сигналами общестанционного регулятора являются уставки частоты вращения для регуляторов подачи топлива работающих ГПА и открытие байпасного клапана КС.

Допустимое отклонение характеристик приводов и нагнетателей не позволяет использовать для всех работающих агрегатов одну и ту же уставку частоты вращения нагнетателя, т.к. нагрузка на них в этом случае будет не равномерна. Задача коррекции уставок индивидуальных регуляторов в зависимости от фактического состояния отдельных агрегатов и их режимов работы представляет значительный практический интерес. Она тесно связана с оптимизацией работы КС в целом. В качестве критерия оптимальности в рассматриваемой системе принят запас по помпажу, равный для всех нагнетателей.


Понравилась статья? Добавь ее в закладку (CTRL+D) и не забудь поделиться с друзьями:  



double arrow
Сейчас читают про: