Формула Стокса

Df.1 Пусть , - область, векторное поле . Ротором (вихрем) векторного поля называется:

(1)

(1) операторная форма записи . Для того, чтобы получить обычную запись необходимо рассмотреть определитель. При этом нужно понимать:

и т.д. Тогда:

Очевидно, операция ставит в соответствие векторному полю векторное поле , определенное в G.

Th.1 (ТЕОРЕМА СТОКСА)

Пусть , G – область. - кусочно-гладкая; - кусочно-замкнутый контур, ограничивающий П. Тогда:

(3)

(3) – формула Стокса.

(Б/д).

       
   
 


       
   
 
 


При этом сторона поверхности и направление обхода контура согласованы. Как правило, обычно выбирается внешняя сторона П.

Th.2 (ТЕОРЕМА ГРИНА)

Пусть , - область, - кусочно-гладкая граница D, ориентированная против часовой стрелки; , тогда:

(4)

(4) – формула Грина.

(Б/д).

Покажем, что (4) – есть частный случай формулы Стокса. Причем это нельзя считать доказательством, т.к. при доказательстве (3) используется (4).

Итак: плоскость П зададим так: .

D

Тогда , кроме того .

Из (3)

(по теореме о сведении поверхностного интеграла II-го рода к двойному)

Здесь , очевидно , т.е. С=1. Итак:

СЛЕДСТВИЕ ИЗ Th.1

Пусть , G -область, определен в G и инвариантен относительно системы координат.

Доказательство:

Г

D G

Рассмотрим направление, задаваемое . П – плоскость, перпендикулярная , проходящая через точку .

Пусть D – поверхность: .

Г – граница (кусочно-гладкая) поверхности D. Направление обхода D согласовано с . Применим формулу Стокса для поверхности D с нормалью и границей Г:

где = , - проекция на направление . По теореме о среднем для поверхностного интеграла I-го рода:

, что

(*)

Отметим, что - непрерывное векторное поле.

Перейдем в (*) к пределу при (, ). В силу непрерывности найдем:

Т.к. и не зависят от выбора системы координат, то не зависит от выбора системы координат инвариантен относительно выбора системы координат. (Достаточно взять три неколлинеарных вектора и считать, что , проекции на . Есть его координаты).

СЛЕДСТВИЕ 2.

Пусть (т.е. и они непрерывны в G) определяет соленоидальное поле в G, т.е. .

САМОСТОЯТЕЛЬНО.

Действительно .

:


Понравилась статья? Добавь ее в закладку (CTRL+D) и не забудь поделиться с друзьями:  



double arrow
Сейчас читают про: