Решение. В задаче рассматривается взаимодействие распределённых зарядов, поэтому для нахождения силы F следует воспользоваться соотношением

В задаче рассматривается взаимодействие распределённых зарядов, поэтому для нахождения силы F следует воспользоваться соотношением:

. (1)

Нить создаёт вокруг себя электростатическое поле, в котором находится заряд, распределённый на отрезке длины l. Если выделить на этом отрезке малый участок длиной dr, то находящийся на нём заряд

dq = t2dr (2)

можно считать точечным и рассматривать dF как силу, действующую со стороны электрического поля нити на dq. – вектор напряжённости поля нити в месте нахождения электрического заряда dq. Электрическое поле равномерно заряженной нити определяется выражением

. (3)

Выражение (1) можно переписать в скалярной форме, учитывая, что векторы и параллельны:

dF = Edq. (4)

Подставив (2) и (3) в (4), получим

. (5)

Для нахождения результирующей силы, действующей на отрезок нити с зарядом q2 со стороны поля прямой бесконечной нити, проинтегрируем выражение (5) в пределах от r0 до (r0+l):

. (6)

После подстановки числовых значений получим

.

2. Полый стеклянный шар несёт равномерно распределённый по объёму заряд. Его объёмная плотность r =100 нКл/м3. Внутренний радиус шара R1 =5 см, а наружный R2 =10 см. Найти напряжённость электрического поля на расстоянии: а) r1 =3 см; б) r2 =6 см; в) r3 =12 см от центра шара.

Решение

Так как заряд шара распределён в пространстве симметрично относительно центра шара О, то и электрическое поле симметрично относительно этой точки. Это позволяет применить для решения задачи метод Гаусса. Из симметрии задачи следует, что вектор направлен вдоль и зависит только от расстояния до центра шара r. Выберем гауссову поверхность в виде сферы, переменного радиуса r с центром в точке О. Учтем, что модуль напряжённости поля шара одинаков во всех точках этой поверхности и Е n= E r. Так как шар диэлектрический, следует применить теорему Гаусса для вектора электрического смещения . Тогда поток вектора смещения сквозь гауссову поверхность

,

где S – площадь гауссовой поверхности, r – её радиус.

Всё пространство можно разбить на 3 области:

1) 0 < r < R1 2) R1 < r < R2 3) r > R2. Применим теорему Гаусса для каждой области.

Для области 0 < r < R1.

Величина свободного заряда, охватываемого поверхностью интегрирования в пределах первой области, равна нулю. Следовательно, поток вектора смещения также равен нулю, а так как площадь поверхности не нулевая, то смещение и напряжённость поля в пределах первой области равны нулю:

D1 = 0, Е1 = D/e0 = 0.

Для области R1 < r < R2.

Свободный заряд, охватываемый гауссовой поверхностью, может быть выражен через объём той части шара, которая попала внутрь сферы радиусом r2:

q своб = (r23-R13)r.

Применяя теорему Гаусса, получим

D24pr22 = ,

E2 = = ,

где e – диэлектрическая проницаемость стекла.

В/м.

Для области r > R2.

Внутрь поверхности попадёт весь заряд шара, поэтому

q своб = (4/3)p(R23 - R13),

и, применив теорему Гаусса, получим выражение

D3 4pr32 = (4/3) p (R23 - R13)r;

Е 3 = D 3/e0 = ;

В/м.

3. Тонкий стержень согнут в полукольцо. Стержень заряжен с линейной плотностью t =133 нКл/м. Какую работу нужно совершить, чтобы перенести заряд q =6,7нКл из центра полукольца в бесконечность?


Понравилась статья? Добавь ее в закладку (CTRL+D) и не забудь поделиться с друзьями:  



double arrow
Сейчас читают про: