Источники активной и реактивной мощности

Электрическая энергия, вырабатываемая генераторами электростанций, характеризуется их активной и реактивной мощностью. Активная мощность потребляется электроприемниками, преобразуясь в тепловую, механическую и другие виды энергии. Реактивная мощность характеризует электроэнергию, преобразуемую в энергию электрических и магнитных полей. В электрической сети и ее электроприемниках происходит процесс обмена энергией между электрическими и магнитными полями. Устройства, которые целенаправленно участвуют в этом процессе, называют источниками реактивной мощности (ИРМ). Такими устройствами могут быть не только генераторы электрических станций, но и синхронные компенсаторы, реакторы, конденсаторы, реактивной мощностью которых управляют по определенному закону регулирования с помощью специальных средств.

Мощность электрооборудования электроэнергетической системы (генераторы, линии электропередач, трансформаторы, электроприемники и т. п.) определяется его полной мощностью. Полная мощность S при синусоидальной форме напряжения и тока связана с активной Р и реактивной Q мощностями квадратичной зависимостью S2 = Р2 + Q2. При этом полная мощность S = UI, активная Р = UI cosj и реактивная Q = UI sinj, где U и I — действующие значения синусоидального напряжения и тока; j — угол между векторами напряжения и тока.

В конденсаторах, кабелях и других видах электрооборудования, которое характеризуется емкостным сопротивлением ХC, реактивной мощностью Q = U2C, определяемой приложенным напряжением U, создаются электрические поля.

В индуктивных элементах системы, например в реакторах, трансформаторах, электродвигателях, создаются магнитные поля. В этом случае реактивная мощность Q = I2ХL определяется током I и индуктивным сопротивлением элемента ХL.

Емкостной ток в идеальном конденсаторе опережает приложенное к нему напряжение на 90 эл. град. Тогда мощность этого конденсатора QC = UI sin(–j) = –UI имеет отрицательный знак. В этом случае говорят, что конденсатор генерирует реактивную мощность.

Индуктивный ток в идеальном реакторе отстает от приложенного к нему напряжения на 90 эл. град. Мощность реактора QL = UI sinj имеет положительный знак. В этом случае говорят, что реактор потребляет реактивную мощность.

Очевидно, что в понятиях «генерирование» и «потребление» реактивной мощности заложена определенная условность, но тем самым подчеркивается, что взаимодействие емкостных и индуктивных элементов в электрической сети имеет компенсирующий эффект QS = QL – QC. Это свойство элементов широко используется на практике для компенсации реактивной мощности, тем самым снижая падение напряжения в сети, потери электроэнергии.

Приведенные выше величины S, P, Q применяются при расчетах режимов в электроэнергетических системах, проектировании и выборе электрооборудования. Значения этих величин принимаются как независимые от времени, что позволяет существенно упростить расчеты.

Фактически же по цепи протекает переменный ток, мгновенное значение которого определяется выражением i = Im sin(wt – j). Под действием этого тока на элементах цепи устанавливается напряжение uа = Um cosj sin(wt – j) — активная составляющая и uр = Um sinj sin(wt – j ± p/2) — реактивная составляющая. Здесь Um и Im — амплитуды синусоидальных напряжения и тока. При этом мощность, потребляемая активными элементами электрической цепи, определяется как функция времени выражением ра = iuа = UI cosj [1 – cos(2wt – j)], а реактивная мощность, потребляемая (генерируемая) реактивными элементами, –qр = iuр = ± UI sinj sin2(wt – j). Линейные диаграммы, отображающие мгновенные значения напряжения и тока в активно-индуктивной цепи, а также соответствующие им мощности приведены на рис. 8.1.

Амплитуды активной и реактивной мощностей, изменяющихся по синусоидальному закону с двойной частотой (2w), соответственно составляют Р = UI cosj и Q = UI sinj, т.е. те самые значения мощностей, которыми пользуются при расчетах режимов и выборе оборудования. При этом мгновенные значения «потребляемой» в индуктивных элементах и «генерируемой» в емкостных элементах реактивной мощности в каждый момент времени имеют противоположный знак, в чем, как было отмечено выше, и проявляется их взаимокомпенсирующее действие.

Вопрос №2 Технико-экономические расчеты при проектировании промышленных электрических сетей. Выбор сечений проводников по экономическим и техническим условиям. Целями технико-экономических расчетов при проектировании электроснабжения
являются:

1. Обоснование инвестиций (долгосрочных капиталовложений) в новые или реконструируемые СЭС и последующих эксплуатационных расходов путем сравнения вариантов по принятым критериям эффективности.
2. Доказательство технических функциональных способностей СЭС, соответствующих обоснованным требованиям потребителей электроэнергии (необходимая пропускная способность элементов, обеспечение надежности электроснабжения, качества электроэнергии и т.д.). При этом проводится выбор и обоснование электрооборудования для выполнения необходимых функций и требований, а также оценка состояния СЭС в нормальных и послеаварийных режимах.
3. Оценка качественных показателей и народнохозяйственного значения принятого решения. Выбор технико-экономически обоснованной схемы электроснабжения предприятия базируется на рассмотрении и сравнении нескольких возможных вариантов по техническим, эксплуатационным и экономическим показателям. К техническим показателям СЭС можно отнести число и уровни ступеней напряжения, отклонение и потери напряжения, безотказность работы и устойчивость элементов СЭС в переходных режимах, стабильность работы электроприводов, степень автоматизации и др. К эксплуатационным показателям относятся продолжительность
восстановления электроснабжения после локализации или ликвидации повреждения, длительность текущих и капитальных ремонтов, допустимые перегрузки элементов СЭС, величины потерь мощности и электроэнергии,
удобство эксплуатации, количество и квалификация обслуживающего персонала.
Важнейшими экономическими показателями при сравнении вариантов СЭС являются приведенные годовые затраты и срок окупаемости капиталовложений. Для более детальной экономической оценки вариантов используются дополнительные показатели: капиталовложения в СЭС, стоимость потерь мощности и электроэнергии, ущерб от внезапных перерывов электроснабжения и т.п. При выполнении технико-экономических расчетов возникают объективные трудности, обусловленные тем, что перебор всех возможных вариантов связан со значительными трудозатратами проектировщиков даже при автоматизированной обработке данных. Кроме того, многие сравниваемые показатели трудно поддаются количественной оценке (например, удобство эксплуатации, гибкость, надежность
и др.). В связи с этим правильный подбор для сравнения нескольких вариантов зависит от эрудиции, опыта и квалификации проектировщиков.
Число и мощность трансформаторов предприятия обычно определяются при расчете компенсации реактивной мощности. Поэтому технико-экономическому сравнению подлежат схемы внутризаводского электроснабжения, использующие как однотрансформаторные, так и двухтрансформаторные подстанции. Варианты схем внешнего электроснабжения могут рассматриваться при проектировании крупных предприятий, имеющих несколько ИП.

Сравниваемые варианты должны быть простыми и учитывать современные тенденции и принципы построения СЭС. Варианты схемы сети 6—10 кВ наносятся на генплан предприятия. Предварительно должны быть намечены трассы линий и места расположения РП и цеховых ТП. Кабельные линии необходимо прокладывать по кратчайшим трассам, вдоль стен зданий и инженерных коммуникаций. Расположение РП и ТП должно быть таким, чтобы исключались обратные потоки электроэнергии по одной и той же линии. Следует также выявить наиболее ответственных потребителей и обеспечить им соответствующее резервирование по сети 6—10 или до 1 кВ. По схемам сетей на генплане определяется длина линий и составляются принципиальные схемы электроснабжения, на которых показываются основные элементы СЭС: коммутационные аппараты, линии, трансформаторы и т.д.


Понравилась статья? Добавь ее в закладку (CTRL+D) и не забудь поделиться с друзьями:  



double arrow
Сейчас читают про: