Symmetric Measures (Симметричные меры)

  Value (Значение) Asympt. Std. Error (а) Асимпто-тическая стандарт-ная ошибка) Approx. Т (b) (Приблиз. Т) Approx. Sig. (Приблизи- тельная значи-мость)
Interval by Interval (Интерваль- ный-интерваль- ныи) Pearson's R (R Пирсона) ,441 ,081 5,006 ,000 (с)
Ordinal by Ordinal (Порядковый-порядковый) Spearman Correlation (Корреляци я по Спирмену) .439 ,083 4,987 ,000 (с)
N of Valid Cases (Кол-во допустимых случаев)          

a. Not assuming the null hypothesis (Нулевая гипотеза не принимается).

b. Using the asymptotic standard error assuming the null hypothesis (Используется асимптотическая стандартная ошибка с принятием нулевой гипотезы).

с. Based on normal approximation (На основе нормальной аппроксимации).

Так как здесь нет переменных с интервальной шкалой, мы рассмотрим коэффициент корреляции Спирмена. Он составляет 0,439 и является максимально значимым (р<0,001).

Для словесного описания величин коэффициента корреляции применяется следующая таблица:

Значение коэффициента корреляции r Интерпретация
0 < г <= 0,2 0,2 < г <= 0,5 0,5 < г <= 0,7 0,7 < г <= 0,9 0,9 < г <= 1 Очень слабая корреляция Слабая корреляция Средняя корреляция Сильная корреляция Очень сильная корреляция

Исходя из вышеприведенной таблицы, можно сделать следующие заключения: Между переменными sex и psyche существует слабая корреляция (заключение о силе зависимости), переменные коррелируют положительно (заключение о направлении зависимости).

В переменной psyche меньшие значения соответствуют отрицательному психическому состоянию, а большие — положительному. В переменной sex, в свою очередь, значение "1" соответствует женскому полу, а "2" — мужскому.

Следовательно, однонаправленность соотношения можно интерпретировать следующим образом: студентки оценивают свое психическое состояние более негативно, чем '.х коллеги-мужчины или, что вероятнее всего, в большей степени склонны согласиться на такую оценку при проведении анкетирования. Строя подобные интерпретации, нужно учитывать, что корреляция между двумя признаками не обязательно равнозначна их Функциональной или причинной зависимости. Подробнее об этом см. в разделе 15.3.

Теперь проверим корреляцию между переменными alter и semester. Применим методику, описанную выше. Мы получим следующие коэффициенты:


Понравилась статья? Добавь ее в закладку (CTRL+D) и не забудь поделиться с друзьями:  



double arrow
Сейчас читают про: