Пусть движение точки задано естественным способом и пусть в некоторый момент времени t точка занимала на траектории положение М, а в некоторый момент времени t1 – положение М1 (рис. 4.2). Вектор
- называется вектором перемещения точки за промежуток времени
. Отношение вектора перемещения к промежутку времени, за который произошло это перемещение, называется вектором средней скорости точки, за промежуток времени
.
. (4.1)
Вектором скорости в точке в момент времени t называется предел вектора средней скорости при стремлении промежутка
к нулю,
. (4.2)
То есть скорость материальной точки при движении по произвольной криволинейной траектории направлена по касательной к траектории в сторону движения.
| М |
| М1 |
| v |
| vср |
Рис. 4.2
Если движение точки задано координатным способом, и движущаяся точка в момент времени t занимала положение М(x, y, z), а в момент времени t1 – положение М1(x+Dx, y+Dy, z+Dz), то вектор средней скорости
, имеет координаты
, а вектор скорости в момент времени t – координаты
.
Проекции вектора скорости на оси координат:
,
,
. Модуль находим по формуле
, (4.3)
Косинусы углов, образуемых вектором скорости с осями координат можно найти из соотношений
,
,
.






