Формула Тейлора для произвольной функции

Рассмотрим функцию у=ƒ(х). Формула Тейлора позволяет, при определенных условиях, приближенно представить функцию ƒ(х) в виде многочлена и дать оценку погрешности этого приближения.

Теорема. Если функция ƒ(х) определена в некоторой окрестности точки х0 и имеет в ней производные до (n+1)-го порядка включительно, то для любого х из этой окрестности найдется точка сє(х0;х) такая, что справедлива формула

Формула (26.3) называется формулой Тейлора для функции ƒ(х). Эту формулу можно записать в виде ƒ(х)=Рn(х)+Rn(x), где

называется многочленом Тейлора, а

называется остаточным членом формулы Тейлора, записанным в форме Лагранжа. Rn(х) есть погрешность приближенного равенства ƒ(х)≈Рn(х). Таким образом, формула Тейлора дает возможность заменить функцию у=ƒ(х) многочленом у=Рn(х) с соответствующей степенью точности, равной значению остаточного члена Rn(x).

45. Функции двух переменных. Определение. Геометрический смысл.

Если любой паре упорядоченных чисел (x, y) из некоторого множества D поставлено в соответствие единственное число z, то переменная z называется функцией двух переменных. z = f (x, y). Переменную z называют зависимой переменной, а переменные x и y – независимыми. Множество D называется областью определения функции, а множество z – множеством значений функции.

Геометрический смысл – множество значений функции представляет собой некоторую поверхность. Так, с помощью уравнения z=x^2+y^2 мы получим параболоид.

46. Частные производные и производные высших порядков.

Частная производная — одно из обобщений понятия производной на случай функции нескольких переменных.

Производные высших порядков - . Подобные формулы посмотреть в тетради, там написано понятней.

47. Дифференциал функции двух переменных.

Полным дифференциалом функции называется линейная, относительно и ) часть полного приращения функции: .

Следовательно, для выполнения задания достаточно найти частные производные первого порядка от функции и подставить их в вышеприведенную формулу.

48. Дифференцирование неявной функции двух переменных.

Если в уравнении вида каждой паре чисел и из некоторой области соответствует одно или несколько значений , удовлетворяющих этому уравнению, то уравнение неявно определяет одну или несколько однозначных функций от и . В этом случае говорят, что есть неявная функция от и .

Частные производные и неявной функции находятся по формулам (предполагается, что ):

49. Экстремумы функции двух переменных. Необходимое и достаточное условия экстремума

Необходимое условие:

Если функция достигает экстремума при , то каждая частная производная первого порядка от или обращается в нуль при этих значениях аргументов, или не существует.

Достаточное условие:

Пусть в некоторой области, содержащей точку функция имеет непрерывные частные производные до третьего порядка включительно. Пусть, кроме того, точка является критической точкой функции , т.е.
,
тогда при :
1) имеет максимум, если дискриминант и , где ;
2) имеет минимум, если дискриминант и ;
3) не имеет ни минимума, ни максимума, если дискриминант ;
4) если , то экстремум может быть, а может и не быть (требуется дополнительное исследование).

50. Вектор градиент и его свойства.

Градиентом дифференцируемой функции u = u (x;y) (u = u(x;y;z)) называется вектор, перпендикулярный к линии (поверхности) уровня функций u = u (x;y) (u = u (x;y;z)):

       
 
   


grad u (х;у) = в R(2); grad u (х;у; z) = в R(3).

Пример 2. Найти градиент функции u(x;y) = x2 + y к линии уровня при с = 1 в точках А(0;1) и В(1;0).

 
 


Уравнения линий уровня х2 + у = с.

Выделим из семейства линий уровня линию

при с = 1: х2 + у =1. Это парабола

у =1 – х2 с вершиной в точке (0;1) и ветвями,

направленными вниз.

Найдем градиент в произвольной точке:

 
 


grad u (х;у) = = {2x; 1};

в точке А(0;1): grad u (х;у) = {0; 1}; в точке В(1;0): grad u (х;у) = {2; 1} и они перпендикулярны к линии уровня в данных точках.

Производная по направлению вектора .

Пусть в области D задана скалярная функция u = u(x;y;z) и выделена поверхность уровня u(x;y;z)=с, на которой взята точка М(х;y;z).

Из точки М проведем вектор ={x;y;z}, на котором выделим .

Спроектируем на плоскость xoy: прxoyΔl=М'М'1. Нормируем вектор ():

, где , , , .

Запишем полное приращение

для u(x;y;z), где ε(x,y,z,Δx,Δy,Δz) – бесконечно малая более высокого порядка.

Разделим приращение Δu на .

Переходя к пределу при → 0, будем иметь значение производной по направлению вектора в R(3): .

Производная по направлениюскорость роста функции u(x;y;z) по направлению вектора .


Понравилась статья? Добавь ее в закладку (CTRL+D) и не забудь поделиться с друзьями:  



double arrow
Сейчас читают про: