Геометрическое место точек, сумма расстояний от которых до двух фиксированных точек плоскости (обычно называемых фокусных) постоянна, называется эллипсом.
Если оси координат расположены так, что Ox проходит через фокусы F1(C,0) и F2(-C,0), а О(0,0) совпадает с серед отрезка F1F2, то по F1М+F2M получаем:
каноническое ур-ие эллипса
,
b2=-(с2-a2).
а и b- полуоси эллипса., а-большая, b-меньшая.
Эксцентриситет.
, (если а>b)
(если а<b)
Эксцентриситет характеризует выпуклость эллипса.
У эллипса эксцентриситет находится: 0
.
Случай
=0 возникает только тогда, когда с=0, а это есть случай окружности – это эллипс с нулевым эксцентриситетом.
Директрисы (D) Геометрическое место точек, отношение расстояний от которых до точки эллипса к расстоянию от этой точки эллипса до фокуса постоянно и равно величине
, называется директрисами.
.
Примечание: у окружности нет директрисы.