double arrow

Интерполяционный многочлен Лагранжа

Пусть на отрезке [a,b] заданы (n+1) точка x0, x1, ¼, xn и значения функции f в этих точках.

Будем строить интерполяционный многочлен вида , где - многочлены степени n, удовлетворяющие условиям

так как требуем, чтобы значения интерполяционного многочлена и значения функции f(x) совпадали в узлах интерполяции i, т.е. .

Тогда можно искать в виде:

где - некоторая константа, которую найдем из условия , тогда

Если обозначить и продифференцировать это выражение по х, полагая х=хj, то последнее выражение можно записать в виде:

,

где

Таким образом, получим многочлен

,

который называется интерполяционным многочленом Лагранжа.

Пусть узлы интерполирования являются равноотстоящими, т.е. , если ввести новую переменную , то многочлен Лагранжа для равноотстоящих узлов запишется в виде

,

т.к. .

Интерполяционный многочлен Лагранжа имеет существенный недостаток: если при выбранном числе узлов выяснилось, что интерполяционный многочлен недостаточно точно находит значение функций в заданной точке, то при добавлении одного или нескольких узлов все вычисления необходимо проводить заново. В том случае, когда требуется найти не аналитическое выражение, а лишь его значение в некоторой точке, от этого недостатка можно избавиться, воспользовавшись интерполяционной схемой Эйткена.

По этой схеме значение интерполяционного многочлена Лагранжа находится путем последовательного применения единообразного процесса

x0 y0 x0-x        
x1 y1 x1-x L01(x)      
x2 y2 x2-x L12(x) L012(x)    
¼ ¼ ¼ ¼ ¼ ¼ ¼
xn yn xn-x Ln-1n(x) Ln-2n-1n(x) Ln-3¼n(x)¼ L01¼n(x)

где , , , .

Применяя эту схему, можно постепенно подключать все новые и новые узлы до тех пор, пока желаемая точность не будет достигнута.

Если все вычисления проведены точно, то интерполяционный многочлен Лагранжа совпадает с заданной функцией в узлах интерполирования. Однако он будет отличен от нее в остальных точках. Исключением является случай, когда сама функция f(x) является многочленом степени не выше n.

Оценка погрешности интерполяционного многочлена Лагранжа, если функция f(x) имеет на [a,b] непрерывные производные (n+1)-го порядка, имеет вид , где x - некоторая точка [a,b] или .

Это выражение может служить оценкой отклонения полинома Лагранжа от f(x) в том случае, когда можно оценить .


Понравилась статья? Добавь ее в закладку (CTRL+D) и не забудь поделиться с друзьями:  



Сейчас читают про: