Что такое “ДНК-компьютер” Л.Адлемана ?

Однако логика развития исследований в этой области поначалу идет в ином направлении. Молекулы ДНК стали использовать как чисто вещественные “параллельно вычисляющие” структуры. Это началось в 1994 году, когда Леонард Адлеман, профессор вычислительных наук из Университета Южной Калифорнии, предложил алгоритм использования ДНК для решения одной из версий “задачи коммивояжера” [49]. Эта задача является одним из выражений так называемой проблемы Гамильтониановского Пути в тяжелых математических задачах (Hamiltonian Path Problem или HPP), и она связана с перебором огромного числа вариантов возможных решений для получения оптимального. Адлеман с помощью “ДНК-компьютинга” решил задачу для 7 городов и 13 дорог между ними, когда необходимо проложить кратчайший маршрут однократного посещения каждого этих городов. Потребовалась всего неделя для получения ответа, в то время как традиционным компьютерам понадобилось бы несколько лет. При этом было использовано фундаментальное явление, свойственное молекулам ДНК – способность ее одиночных цепей к комплементарным взаимоузнаваниям. Это явление заключается в том, что любые фрагменты каждой из двух цепочек ДНК находят в растворе (или в составе хромосом живой клетки) только собственные, в некотором смысле зеркальные, половинки и образуют нормальную двойную спираль. Этот феномен является одним из проявлений общего свойства высокоорганизованных биоструктур и полимерных молекулярно-надмолекулярных образований к самосборке. Так in vitro - in vivo самособираются рибосомы, мембраны, хромосомы, вирусы и фаги. В том числе и однонитевые ДНК. Успешность и быстрота спонтанных поисков половинками ДНК друг друга, как акта самоорганизации (самосборки) и обеспечили высокую скорость перебора вариантов в пределах “задачи коммивояжера”. Причины быстрых и точных взаимоузнаваний половинок ДНК до недавнего времени были неизвестны. А это необычайно важно для реального создания ДНК-компьютера, и об этом речь пойдет ниже. Несколько подробнее о модели Адлемана, поскольку его и наша логики принципиально различаются. Как мы (и не только) полагаем, путь, который выбрал Адлеман и его многочисленные последователи, используя ДНК как “вычислительную” структуру, неправильно ими оценивается как некий ДНК-компьютинг. Дэвид Гиффорд, один из крупных авторитетов в компьютинге, первым поддержавший Адлемана, сказал, что “это не молекулярный компьютер”, и что эта техника “..может только решать некоторые виды комбинаторных проблем, это не универсальный или программируемый компьютер типа IBM PC” [50]. Чтобы понять, почему правы мы и Гиффорд, коротко рассмотрим метод Адлемана. Он обозначил каждый город как отрезок однотяжной ДНК длиной в 20 оснований (баз) со случайными последовательностями. Дороги между каждыми двумя городами были представлены как отрезки комплементарных однотяжных ДНК в 20 баз, которые перекрывают половины путей между городами. При этом соблюдается каноническое правило спаривания оснований в двутяжных ДНК: Аденин-Тимин, Гуанин-Цитозин. Путь между 7 городами начинается с фрагмента двутяжной ДНК, которая соединяет какие-либо два города. Важно, что фрагментов ДНК, обозначающих какой-то один город, может быть больше чем один. Затем более 100 миллиардов радиоактивно меченых “ДНК-городов” и “ДНК-путей” были перемешаны в пробирке и размножены ферментативной ДНК-амплификацией. На этом, как считает Адлеман, “ДНК-компьютинг” заканчивается. Далее, чтобы получить ответ – оптимальный путь (определенные фракции ДНК), реакционную смесь с “ответом” электрофоретически разделяли с тем, чтобы получить все пути, идущие от “старта” до “конца”. Затем выделяли те пути, которые только раз проходили через 7 городов; выделяли пути между 7 разными городами. И если обнаруживали фракции “ДНК-путей” после этого этапа, то они считались наиболее оптимальными (“победителями”). В этом и было “решение” задачи коммивояжера. В процессе нахождения такого “решения” были задействованы миллиарды параллельных быстро происходящих комплементарных спонтанных (не программируемых человеком) актов “узнаваний” однотяжных ДНК и миллиарды спонтанных энзиматических репликаций этих молекул. При этом с малой затратой времени и энергии образуется нечто вроде “генетического супа”. Такая скорость и точность молекулярных процессов немыслима для эквивалентных операций в цифровых электронных компьютерах, использующих детерминистические вектора обработки информации. В случае “ДНК-компьютинга”, как считают, используются не детерминистические акты обработки больших параллельных массивов цифр-букв (4-х нуклеотидов ДНК). Итак, Алгоритм решения Гамильтониановского пути по Адлеману таков:

Случайные пути представляются графом,

Сохраняются только те пути, которые начинаются (в случае городов A,B,C,D,E,F,G) со старта в городе A и заканчиваются в городе G,

Если город имеет n городов, сохраняются только пути в n городов (n=7),

Сохраняются только те пути, которые проходят все города однажды,

Любые оставшиеся пути являются решениями.

Молекулярно-биологические этапы получения решения сводятся к следующим операциям:

а) синтез однотяжных ДНК,

б) разделение их по длине с вычленением 20-базовых ДНК,

в) смешивание их в пробирках,

г) выделение нитей ДНК с известными последовательностями,

д) выделение реассоциацией комплементарных двутяжных ДНК,

е) PCR-амплификация (размножение) ДНК,

ж) разрезание ДНК рестриктазами,

з) лигирование ДНК, комплементарных по “липким” концам,

и) определение присутствия или отсутствия меченых ДНК в тестовых пробирках.

Какова эффективность работы такой системы “вычислений? В то время как существующие цифровые компьютеры производят 109 операций на Джоуль, “ДНК-компьютер” может делать 2·1019 операций на Джоуль, то есть в 1010 более эффективно. Плотность информации в ДНК - 1 бит/nm3, а в существующих компьютерах 1012 nm3 содержат 1 бит”[50].

И все-таки, является ли такая работа ДНК в рамках такой методологии работой компъютера? Нет. В этом варианте, в контролируемых условиях, спонтанно, в параллельных режимах нарабатывается огромное количество “ДНК-путей”. В том числе и правильных (оптимальных). Далее начинается собственно компьютинг, но он осуществляется людьми. Осмысленное выделение фракций ДНК – это и есть процесс получения решения задачи коммивояжера. В роли компьютера здесь выступает человек, его ментальное участие есть условие получение ответа. Но это не участие в программировании ДНК, что сближало бы такую работу с известным цифровым компьютингом. ДНК уже сама по себе “запрограммирована” на комплементарность в ходе эволюции живых систем. Однонитевые ДНК изначально способны к взаимоузнаваниям. Принципиально, что комплементарность Аденин-Тимин, Гуанин-Цитозин только на последних этапах обеспечивается близко действующими водородными связями между азотистыми основаниями. Предварительные прицельные “наводки” как между однонитевыми ДНК, так и между тРНК-мРНК антигеном-антителом и т.д. осуществляются на уровне дальних волновых взаимодействий (“узнаваний”). Эту способность ДНК можно назвать элементарной потенцией к распознанию образов, а следовательно, компьютингу. Но это явление другого рода, а именно, ДНК-волновой компьютинг. Принципиальное отличие ДНК-волнового компьютинга от электронно-цифрового в том, что он оперирует образами и квази-речевыми построениями [1, 30]. Такой биокомпьютер работает не с цифрами, как эквивалентами богатства (такого, например, как валюта), а с самим богатством. Как упоминалось, “задачи коммивояжера” успешно и спонтанно, без ментального участия человека, решаются в таких актах самосборки in vitro - in vivo как биогенез рибосом, вирусов, мембран, полисубъединичных белков, а также в процессах самоорганизации хромосомного аппарата после митоза и мейоза. Кроме того, эти механизмы используются живой клеткой при нахождении путей сближения в реакциях антиген-антитело, тРНК-мРНК, белок-рецептор и т.д. В этих актах достигается быстрый перебор и нахождение оптимальных волновых векторов самоорганизации биосистем, высшим проявлением которой служит биоморфогенез.

Параллелизм и амплификация рестриктных фрагментов ДНК с размножением множества “решений” в модели “компьютинга” Адлемана можно также рассматривать как образец искусственной нелокальности создаваемых в пространстве реакционных пробирок “ДНК-смысловых” ареалов, поскольку отсутствует пространственная и временная привязка точного “решения” задачи коммивояжера. Локальность здесь возникает только после принятия истинного решения в локальной голове человека после отбора им определенных фракций “ДНК-победителей”.

Правильное и эффективное использование ДНК, как основного информационного элемента потенциального биокомпьютера, немыслимо без понимания новых функций генетических молекул в биосистемах. Казалось бы, относительно роли ДНК все ясно – давно открыт генетический код, имеется с полдюжины нобелевских лауреатов. Вроде бы, налицо и успехи в генной инженерии. Однако в последние годы выяснилось, что все далеко не так безоблачно. Фактически сейчас генетика и эмбриология вышли на новый уровень, когда полученных знаний о ДНК, как носителя известного триплетного кода белков, оказывается недостаточно. Как и десятилетия назад мы не знаем главного - каким образом записана информация о строении нашего тела в хромосомах, как она считывается. Общепринятая модель генетического кода - лишь слабое приближение к пониманию программ создания организма. Уже то, что такая модель предполагает большую часть ДНК в хромосомах “мусорной”, не выполняющими никакой роли, ставит под сомнение ее правильность. Именно эта "не кодирующая" часть хромосомного материала требует иного мышления, особенно в попытках создать ДНК-компьютер, не говоря уже о нашем желании понять феномен возникновения Жизни.

Языковый плюрализм генетического аппарата и моделирование знаковых волновых процессов в хромосомах. Выход на ДНК-биокомпьютинг.

Напомним, что хромосомный аппарат, как система записывающая, сохраняющая, изменяющая и транслирующая генетическую информацию, может рассматриваться одновременно на уровне Вещества и на уровне достаточно хорошо изученных Физических Полей, которыми, как носителями генетической и общерегуляторной информации, оперирует континуум молекул ДНК, РНК и белков. Здесь реализуются, как показали наши исследования, неизвестные ранее виды памяти (солитонная, голографическая, поляризационная), и при этом молекулы ДНК могут работать как биолазеры и как среда записи лазерного сигнала [21, 29]. Кроме того, мы обнаружили, что ДНК способна излучать индуцированное лазером широкополосное электромагнитное радиоволновое поле (см. выше). Рассматриваемый с таких позиций генетический код будет существенно иным по сравнению с “канонической”, но неточной моделью. Прежняя модель генетического кода может объяснить только механизмы биосинтеза белков живых организмов. Поэтому она является системой трактовок лишь начальных звеньев в сложной иерархической цепочке вещественных и волновых голографических, семиотико-семантических, в общем случае образных, кодирующих и декодирующих функций хромосом. Молекулы ДНК, как гено-знаковый континуум любой биосистемы, способен к формированию прообразов биоструктур и организма в целом как реестр динамичных, сменяющих друг друга “волновых копий” или “матриц”, изоморфных архитектонике организмов. Этот континуум является разметочным, калибровочным полем для построения биосистемы. В этом плане механизм быстрого и точного взаимоузнавания однотяжных ДНК, тот механизм, которым воспользовался Адлеман для решения “задачи коммивояжера” - лишь один из способов самоорганизации биосистем. Взаимоузнавание, в частности, происходит потому, что в молекулах ДНК зарождаются особые сверхустойчивые акустико-электромагнитные волны, солитоны, некоторые разновидности которых можно трактовать в рамках открытого в 1949г. явления возврата Ферми-Паста-Улама (ФПУ). Такие солитоны ДНК обладают памятью, свойственной явлению ФПУ-возврата. Она выражается в том, что нелинейные системы способны помнить начальные моды возбуждений и периодически к ним “возвращаться”. Напомним, что жидкие кристаллы ДНК в составе хромосом – это типичная нелинейная система. Другой тип памяти ДНК-континуума в организме – квазиголографическая, она же и фрактальная, поскольку любая голограмма есть фрактал. Такая память – одно из проявлений нелокальности генома (см. выше), и она связана с фундаментальным свойством биосистем - восстанавливать целое из своей части. Это свойство хорошо известно (черенкование растений, регенерация хвоста у ящериц, регенерация целого организма из яйцеклетки). Наиболее развитая форма такой памяти – голографическая (ассоциативная) память коры головного мозга, то есть нейронов. Все эти результаты приводятся здесь только потому, что бесперспективно рассуждать о ДНК-компьютере, даже решив с помощью молекул ДНК “задачу коммивояжера”, если не учитывать новую логику в понимании волновых знаковых, кодирующих биофункций ДНК.

Уединенные волны (солитоны) ДНК, пробегающие по ее длине, могут выступать в качестве "субъектов чтения" знаковых структур генома. Такую роль выполняют волны крутильных колебаний нуклеотидов в однотяжных участках ДНК, а также в РНК [11]. Знаковая колебательная динамика таких кручений нуклеотидов является, вероятно, одной из многих нелинейно-динамических семиотических образований генома. Что касается термина “тексты ДНК”, который был взят взаймы у лингвистов для метафорического употребления, то оказывается эта текстовая структура ДНК действительно сродни человеческой речи. Наши математико-лингвистические исследования [1, 5, 7] показали, что такой ключевой параметр, как фрактальность, един для ДНК и человеческой речи. Это видно при сравнении Рис. 1а, на котором дана матрица плотности хаотически игрового представления некоторой проекции текста на английском языке, и Рис. 1б, на котором приведена аналогичная матрица нуклеотидной последовательности, кодирующей первичную структуру белка казеина. Такие наблюдения коррелируют с ранними работами в этой области (см., напр., работы Н.Хомского по универсальным грамматикам или монографию. М.М.Маковского “Лингвистическая генетика” (1992г.)). Используя эти теоретические разработки и собственные данные по физикохимии ДНК, нам удалось экспериментально доказать возможность свертки генетической информации в форме солитонных волновых пакетов, описываемых физико-математическим формализмом явления возврата Ферми-Паста-Улама (ФПУ). Такие волновые пакеты с искусственно введенной в них биоинформацией, генерируемые разработанными нами ФПУ-радиоэлектронными устройствами, способны входить в резонансный информационный контакт с генетическим аппаратом животных, растений и, вероятно, человека с последующим резким и направляемым изменением их обмена веществ. Оказалось, что и само вещество наследственности - ДНК - является генератором ФПУ-солитонных акустико-электромагнитных полей. Именно поэтому ФПУ-генераторы способны вводить волновую информацию в хромосомы по электромагнитным резонансным механизмам. Эффективность ФПУ-генераторов на порядки возрастает, если на практике использовать феномен математической общности фрактальной структуры ДНК-“текстов” и человеческой речи [1, 30]. Грамматика генетических текстов является, вероятно, частным случаем универсальных грамматик всех языков людей. Поэтому и реализуются физико-смысловые резонансы солитонных структур ДНК и искусственных знаковых ФПУ-солитонных полей, как аналогов естественных ФПУ-хромосомных полей. Вводя определенные кодовые вербальные команды через генератор ФПУ в генетический аппарат радиационно поврежденных семян пшеницы и ячменя, нам удалось достоверно уменьшить число хромосомных аберраций, то есть фактически блокировать поражающее действие рентгеновского облучения. Более того, выяснилось, что возможна превентивная защита генома растений от жесткого рентгеновского излучения с помощью адекватных волновых команд. Контрольные эксперименты, с хаотическими вербальными построениями (командами), введенными через ФПУ-устройства в геном биосистем, показали, что такие команды никак не влияют на хромосомы. Эти эффекты предсказаны и проверены на основании теории волновых генов и с использованием математических компьютерных моделей, имитирующих “чтение” солитонами на ДНК генотекстов и ретрансляцию этих текстов в другие клетки и ткани [1-26]. На Рис. 2 и 3 представлены результаты численного моделирования динамики конформационных возмущений ДНК [11], показывающие зависимость поведения уединённой (солитоноподобной) волны от последовательности нуклеотидов ДНК, на которой эта волна была запущена. Другие наши физико-математические модели и эксперименты обосновывают т.н. “антенный эффект” при возбуждении электромагнитными полями выделенных коллективных мод макромолекул ДНК. Это прямо связано с теорией волновых генов, экспериментами по двухфотонной накачке геноструктур in vitro с последующим лазерным излучением ДНК, а также согласуется с результатами по запоминанию жидкими кристаллами ДНК инфракрасного импульсного лазерного сигнала [29].

Вернемся к гипотетическому биокомпьютеру, использующему вещественно-волновые знаковые функции ДНК. Ясно, что при его разработке необходимо использовать не только и не столько результаты эксперимента Адлемана и его последователей. Чтобы реализовать свои возможности in vitro, ДНК и/или хромомомы должны находиться в естественной для них среде - в водном растворе, имитирующем кариоплазму, и в жидкокристаллическом состоянии. Истинные волновые управляющие, в том числе и компьютерные, возможности геноструктур могут быть выявлены в условиях, максимально приближенных к тем, которые имеются в живой клетке. В пределе компьютер на ДНК - это и есть живая клетка. Искусственный аналог клетки пока невозможен. Сейчас мы можем делать только какие-то модели приближения к волновым знаковым состояниям ДНК в клетке, как это было сделано нами в отношении записи ДНК-волновой информации на лазерных зеркалах и регенерации радиационно поврежденных семян ДНК-радиоволнами (см. выше). Далее необходимо начать практическое использование волновых типов памяти геноструктур и для этого пытаться конструировать ячейки памяти, работающие на явлении ФПУ-резонансов и/или на способности записывать голограммы, а также на явлении записи поляризационно-лазерно-радиоволновой ДНК-информации на локализованных (сжатых, спутанных) фотонах. Такая память будет на многие порядки по объему, быстродействию, “интеллектуальности” превосходить память существующих магнитных, оптических дисков и голографических запоминающих установок. Вторая принципиальная возможность связана с перечисленными типами памяти, но многократно усиливается способностью хромосом быть лазероактивной средой. Препараты хромосом выступают в таком варианте одновременно и как ячейки памяти, и как лазеры, считывающие собственную (а также наведенную) голографическую, ФПУ-память и память на локализованных фотонах. И наконец, последняя из достижимых в настоящее время целей - использование квази-речевых характеристик ДНК. Можно создавать такие ДНК-лазеры, которые будут высвечивать и “озвучивать” как естественные генотексты, так и искусственные (синтезированные человеком) знаковые последовательности полинуклеотидов, имитирующие естественные квази-речевые генопрограммы. Однако это весьма опасный путь и необходима система запретов на искусственные волновые гены. Такой способ работы с потенциальными ДНК-компьютерами означает вхождение в новые семиотические ареалы генома человека, вообще всей биосферы, ареалы, которые Природа использовала для создания человека. Эта мысль вполне обоснована, если учесть теоретические работы по коллективной симметрии генетического кода, проводимые школой Эйгена в Институте Макса Планка в Германии. Исследования школы Эйгена показывают, что ключевая часть информации, записанная и записываемая как квази-речь в хромосомах всех организмов нашей планеты, носит искусственный характер. Наши данные о том, что хромосомный континуум и ДНК любой биосистемы является неким подобием антенны, открытой во вне для приема дополнительной (возможно, экзобиологической) Информации, подтверждают сказанное [52]. Можно думать, что геном организмов Земли, по крайней мере частично, является полигоном для смысловых Экзобиологических влияний, и в этом плане существенно, что мы нашли первичные подходы к вхождению в этот семиотико-семантический ареал. Основываясь на сказанном, можно предсказать, что открываются следующие перспективы знаковых манипуляций с геноструктурами, как основным субстратом биокомпьютеров: а) создание искусственной памяти на генетических молекулах, обладающей поистине фантастическим объемом и быстродействием, б) Создание биокомпьютера на ДНК, основанного на волновых принципах и сравнимого по способам обработки информации и функциональным возможностям с человеческим мозгом, в) осуществление дистантного управления ключевыми информационными процессами в биосистемах через искусственные биокомпьютеры (лечение рака, СПИДа, генетических уродств, управление социогенетическими процессами и, в конечном итоге, увеличение времени жизни человека), г) активная защита от деструктивных волновых влияний через обнаруженный информационно-волновой канал, д) устанавление экзобиологических контактов.

Подводя итог, спросим - что остается от логики постановочных экспериментов с ДНК, которую предлагают Адлеман и другие исследователи в области ДНК-компьютинга? Эта логика уязвима, поскольку основана на упрощенных представлениях о знаковой работе хромосом, как только вещественного субстрата. Волновые знаковые функции геноструктур не берутся в расчет. Это неизбежно приводит в тупик в попытках использовать одномерное мышление относительно ДНК при создании биокомпьютера. В действительности такой компьютер должен имитировать функции генома в оперировании волновой информацией - создавать образы, в том числе и квази-речевые, распознавать их, манипулировать ими как командными. ДНК-компьютерные волновые знаковые структуры будут обладать огромной биологической, а может быть, и ментальной активностью. Если принять эти идеи, то необходимо иное стратегическое распределение финансирования в генетике, эмбриологии и генной инженерии, а также в ДНК-компьютинге. ДНК-волновые компьютеры будут способны управлять суперсложными процессами, реально сравнимыми с метаболизмом и мышлением. Это тем более вероятно, поскольку геном, как нам представляется, использует эффекты квантовой нелокальности.


Понравилась статья? Добавь ее в закладку (CTRL+D) и не забудь поделиться с друзьями:  



double arrow
Сейчас читают про: