Прогнозирование по линейному уравнению регрессии

Для прогнозирования с помощью уравнения регрессии необходимо вычислить коэффициенты и уравнения регрессии. И здесь существует еще одна проблема сказывающаяся на точности прогнозирования. Она заключается в том, что обычно нет всех возможных значений переменных Х и У, т.е. генеральная совокупность совместного распределения в задачах прогнозирования не известна, известна только выборка из этой генеральной совокупности. В результате этого при прогнозировании помимо случайной составляющей возникает еще один источник ошибок – ошибки, вызванные не полным соответствием выборки генеральной совокупности и порождаемыми этим погрешностями в определении коэффициентов уравнения регрессии.

Иными словами вследствие того, что генеральная совокупность не известна, точные значения коэффициентов и уравнения регрессии определить не возможно. Используя выборку из этой неизвестной генеральной совокупности можно лишь получить оценки и истинных коэффициентов и.

Для того чтобы ошибки прогнозирования в результате такой замены были минимальными, оценку необходимо осуществлять методом который гарантирует несмещенность и эффективность полученных значений. Метод обеспечивает несмещенные оценки, если при неоднократном его повторении с новыми выборками из одной и той же генеральной совокупности обеспечивается выполнение условия и. Метод обеспечивает эффективные оценки, если при неоднократном его повторении с новыми выборками из одной и той же генеральной совокупности обеспечивается минимальная дисперсия коэффициентов a и b, т.е. выполняются условия и.

В теории вероятности доказана теорема согласно которой эффективность и несмещенность оценок коэффициентов уравнения линейной регрессии по данным выборки обеспечивается при применении метода наименьших квадратов.

Суть метода наименьших квадратов заключается в следующем.

Для каждой из точек выборки записываются уравнение вида. Затем находятся ошибка между расчетным и фактическим значениями. Решение оптимизационной задачи по нахождению таких значений и которые обеспечивают минимальную сумму квадратов ошибок для всех n точек, т.е. решение задачи поиска, дает несмещенные и эффективные оценки коэффициентов и. Для случая парной линейной регрессии это решение имеет вид:

Следует отметить, что полученные таким образом по выборке несмещенные и эффективные оценки истинных значений коэффициентов регрессии для генеральной совокупности вовсе не гарантируют от ошибки при однократном применении. Гарантия заключается в том, что, в итоге многократного повторения этой операции с другими выборками из той же генеральной совокупности, гарантирована меньшая сумма ошибок по сравнению любым другим способом и разброс этих ошибок будет минимален.

Полученные коэффициенты уравнения регрессии определяют положение регрессионной прямой, она является главной осью облака образованного точками исходной выборки. Оба коэффициента имеют вполне определенный смысл. Коэффициент показывает значение при, но в многих случаях не имеет смысла, кроме того часто также не имеет смысла, по этому приведенной трактовкой коэффициента нужно пользоваться осторожно. Более универсальная трактовка смысла заключается в следующем. Если, то относительное изменение независимой переменной (изменение в процентах) всегда меньше чем относительное изменение зависимой переменной.

Коэффициент показывает насколько единиц изменится зависимая переменная при изменении независимой переменной на одну единицу. Коэффициент часто называют коэффициентом регрессии подчеркивая этим, что он важнее чем. В частности, если вместо значений зависимой и независимой переменных взять их отклонения от своих средних значений, то уравнение регрессии преобразуется к виду.

Коэффициент корреляции меняется в пределах от –1 до +1. Чем он ближе по абсолютному значению к единице, тем сильнее зависимость (тем сильнее облако данных прижато к своей главной оси). Если то наклон линии регрессии отрицателен, чем ближе он к 0 тем слабее связь, при линейной связи между переменными нет, а при связь переменных является функциональной. Коэффициент корреляции позволяет получить оценку точности уравнения регрессии - коэффициент детерминации. Для парной линейной регрессии он равен квадрату коэффициента корреляции, для многомерной или нелинейной регрессии его определение сложнее. Коэффициент детерминации показывает, сколько процентов дисперсии зависимой переменной объясняется уравнением регрессии, а - сколько процентов дисперсии осталась необъясненной (зависит от неконтролируемого нами случайного члена).

32. Временные ряды: понятие, классификация.

Модели, построенные по данным, характеризующим один объект за ряд последовательных моментов (периодов), называются моделями временных рядов.

Временной ряд – это совокупность значений какого-либо показателя за несколько последовательных моментов или периодов.

Предполагается, что в общем случае каждый уровень временного ряда содержит три основные компоненты: тенденцию (Т), циклические или сезонные колебания (S) и случайную компоненту (E).

Виды временных рядов.

Временные ряды делятся на моментные и интервальные. В моментных временных рядах уровни характеризуют значения показателя по состоянию на определенные моменты времени. Например, моментными являются временные ряды цен на определенные виды товаров, временные ряды курсов акций, уровни которых фиксируются для конкретных чисел. Примерами моментных временных рядов могут служить также ряды численности населения или стоимости основных фондов, т.к. значения уровней этих рядов определяются ежегодно на одно и то же число.

В интервальных рядах уровни характеризуют значение показателя за определенные интервалы (периоды) времени. Примерами рядов этого типа могут служить временные ряды производства продукции в натуральном или стоимостном выражении за месяц, квартал, год и т.д.

Иногда уровни ряда представляют собой не непосредственно наблюдаемые значения, а производные величины: средние или относительные. Такие ряды называются производными. Уровни таких временных рядов получаются с помощью некоторых вычислений на основе непосредственно наблюдаемых показателей. Примерами таких рядов могут служить ряды среднесуточного производства основных видов промышленной продукции или ряды индексов цен.

Уровни ряда могут принимать детерминированные или случайные значения. Примером ряда с детерминированными значениями уровней

служит ряд последовательных данных о количестве дней в месяцах. Естественно, анализу, а в дальнейшем и прогнозированию, подвергаются ряды со случайными значениями уровней. В таких рядах каждый уровень может рассматриваться как реализация случайной величины - дискретной или непрерывной.

33. Компонентный анализ рядов динамики.

Ряды динамики — это ряды статистических показателей, характеризующих развитие явлений природы и общества во времени. Публикуемые Госкомстатом России статистические сборники содержат большое количество рядов динамики в табличной форме. Ряды динамики позволяют выявить закономерности развития изучаемых явлений.

Для более глубокого изучения закономерностей развития показателя используется компонентный анализ, который представляет из себя разложение данного временного ряда на конечное число соответствующих. Любой экономический процесс может быть представлен хотя бы одним из нижеуказанных компонент.

Наиболее часто встречающимися, на которые можно разложить временной ряд, являются следующие:

U (t) – характеризует устойчивые систематические изменения уровней ряда, т.е. тренд

K (t) – нестрого периодические циклические колебания

V (t) – строго периодические колебания (сезонные).

E (t) – случайная компонента (несистематические колебания, которые возникают от случая.

Однако часто приходится встречаться с такими рядами динамики, в которых уровни ряда претерпевают самые различные изменения (то возрастают, то убывают) и общая тенденция развития неясна.

На развитие явления во времени оказывают влияние факторы, различные по характеру и силе воздействия. Одни из них оказывают практически постоянное воздействие и формируют в рядах динамики определенную тенденцию развития. Воздействие же других факторов может быть кратковременным или носить случайный характер.

Поэтому при анализе динамики речь идет не просто о тенденции развития, а об основной тенденции, достаточно стабильной (устойчивой) на протяжении изученного этапа развития.

34. Способы установления наличия тенденции в ряду динамики.

Приемы для установления тенденций или закономерностей.

o Преобразование ряда — применяется для большей наглядности зменений изучаемых явлений. Одно число ряда принимается за 1, чаще всего за 100 или 1000, и, по отношению к данному числу ряда, рассчитываются остальные.

o Выравнивание ряда — применяется при скачкообразных изменениях (колебаниях) уровней ряда. Цель выравнивания — устранить влияние случайных факторов и выявить тенденцию изменений значений явлений (или признаков), а в дальнейшем установить закономерности этих изменений

Способы и методы выявления тренда:

1)Увеличение интервалов.

Первоначальный ряд динамики заменяется другим рядом, уровни которого относятся к большим по продолжительности периодам времени. Новые уровни образуются суммированием старых.

2)Вычисление средних уровней для укрупненных интервалов. Является частным случаем первого метода.

3)Определение скользящей средней – для первоначального ряда динамики формируются увеличенные интервалы, состоящие из одинакового количества уровней. Каждый новый интервал получается из предыдущего смещением на один уровень.

4)Аналитическое выравнивание – в основе метода лежит функциональная зависимость уровня ряда от времени. Метод предполагает установление вида функции с использованием корелляционного анализа. На практике чаще всего применяют математические функции следующего вида: 1.линейная 2.параболическая 3.гиперболическая 4.степенная:


Понравилась статья? Добавь ее в закладку (CTRL+D) и не забудь поделиться с друзьями:  



double arrow
Сейчас читают про: