Теоретическая часть. Все вещества по способности проводить электрический ток можно подразделить на две группы: проводники и диэлектрики

Все вещества по способности проводить электрический ток можно подразделить на две группы: проводники и диэлектрики. Среди проводников есть вещества, которые проводят электрический ток за счет направленного движения электронов проводники I рода. К таким веществам относятся металлы, характеризующиеся электронной проводимостью. Существуют вещества способные проводить электрический ток в растворенном или расплавленном состояниях. Эту способность обуславливают ионы, образующиеся при диссоциации данных веществ, при растворении в полярных растворителях или при плавлении при повышенных температурах. Такие вещества, растворы или расплавы которых содержат подвижные ионы, называютэлектролитами. В отличие от металлов электролиты относятся к проводникам II рода и характеризуются ионной проводимостью. К электролитам относятся кислоты, основания и соли. Это вещества с ионным или ковалентным полярным типом связи.

Неэлектролитаминазываются вещества, растворы или расплавы которых не содержат ионов, а, следовательно, не могут проводить электрический ток. Это вещества с ковалентными неполярными или малополярными химическими связями.

Например:

· некоторые газы (азот, кислород)

· некоторые твердые вещества (сера, кремний, медь)

· некоторые органические соединения (сахароза, бензин, спирт).

Сухая кристаллическая соль хлорид натрия электрический ток не проводит. Имеющиеся в кристаллической решетке хлорида натрия ионы натрия (Nа+) и (Сl-) сильно притягиваются друг к другу и не могут свободно перемещаться. При растворении соли в воде ионы, образующие данный электролит, под действием полярных молекул воды отрываются друг от друга и распределяются между молекулами растворителя. Происходит процесс электролитической диссоциации.

Электролитическая диссоциацияпроцесс распада электролита в растворе с образованием положительно заряженных ионов (катионов) и отрицательно заряженных ионов (анионов).

При растворении в воде или при плавлении неэлектролитов, например, сахара происходит распад его кристаллов только на отдельные электронейтральные молекулы. При этом ионов не образуется и растворы или расплавы неэлектролитов электрический ток не проводят.

Для объяснения особенностей поведения электролитов шведским ученым С. Аррениусом в 1887 году была предложена теория, получившая название теории электролитической диссоциации. Сущность данной теории состоит в следующем:

1. Электролиты при растворении или в расплаве распадаются, диссоциируют на ионы – заряженные положительно (катионы) и заряженные отрицательно (анионы). Свойства ионов совершенно иные, чем у образовавших их атомов.

2. Под действием разности потенциалов, между электродами, погруженными в раствор электролита, ионы приобретают направленное движение, положительно заряженные ионы (катионы) движутся к отрицательно заряженному электроду (катоду), отрицательно заряженные (анионы) - к положительно заряженному электроду (аноду). Раствор электролита проводит электрический ток.

3. Диссоциация в общем случае является процессом обратимым. Это означает, что параллельно с распадом молекул на ионы (диссоциация), идет обратный процесс соединения ионов в молекулы (ассоциация).

Чтобы отметить эту особенность процессов электролитической диссоциации в уравнениях знак равенства заменяют знаком обратимости (D). Например, уравнение диссоциации молекул некоторого электролита (КtАn) на катион Кt+ и анион Аn- записывается в виде:

КtАn D Кt+ + Аn-

Если электролит является сильным (см. далее), то преимущественно протекает процесс распада на ионы, а обратный процесс ассоциации выражен незначительно. Изображая диссоциацию таких электролитов, вместо знака обратимости ставят одну стрелку, указывающую на направление преимущественного протекание процесса.

С точки зрения теории электролитической диссоциации кислоты (по Аррениусу)сложные вещества, диссоциирующие на катионы водорода и анионы кислотного остатка:

HCl " H+ + Cl-

Кислотные остатки (С1-, NO3- и др.) для различных кислот различны, но общим для всех кислот является образование в растворах иона водорода (H+). Наличие в растворах кислот иона водорода, точнее, гидратированного иона водорода - гидроксония (H+∙H2O или Н3O+), обусловливает общие свойства кислот: кислый вкус, действие на индикаторы, взаимодействие с металлами с выделением водорода и др.

Основания (по Аррениусу)– сложные вещества, диссоциирующие анионы гидроксила и катионы металла (или заменяющих его групп).

Например:

NаOH " Na+ + OH-

Общие свойства оснований (мыльность на ощупь, соответствующее действие на индикатор, взаимодействие с кислотами и др.) определяются наличием в растворах оснований ионов гидроксила (ОН-).

Солями называются сложные вещества, диссоциирующие на катионы металла и анионы кислотного остатка.

Например:

Al2(SO4)3 " 2Al3+ + 3SO4 2-

Для количественной оценки процесса электролитической диссоциации используется понятие степени электролитической диссоциации.

Степень электролитической диссоциации a - это отношение числа молекул, распавшихся на ионы (n), к общему числу молекул растворенного вещества (No) в растворе:

Степень диссоциации выражается в долях единицы или в процентах.

Например, если a = 30%, то это означает, что из каждых 100 молекул электролита на ионы распадается 30 молекул (a = 0, 3).

Степень электролитической диссоциации зависит от:

· природы растворяемого вещества,

· природы растворителя,

· температуры,

· концентрации раствора.

Зависимость диссоциации от природы электролита определяется полярностью связей между атомами в частице электролита. Вещества с ковалентными неполярными или малополярными связями либо не диссоциируют, либо диссоциируют незначительно. Хорошо распадаются на ионы вещества с ковалентными сильно полярными или ионными связями. Следовательно, в растворах хлорида натрия (ионная связь), хлороводорода (ковалентная полярная связь) и хлора (ковалентная неполярная связь) распадаться на ионы будут NаС1 и НС1, а Сl2 будет находиться в растворе в виде молекул.

Если же в растворе оказываются молекулы сложных веществ с различным видом связи, то распад молекулы на ионы произойдет в том месте молекулы, где атомы связаны ионной или ковалентной сильно полярной связью.

Например, молекула гидрокарбоната калия КНСО3характеризуется наличием ионных (К–О) и ковалентных полярных (Н–О и С–О ) связей.

К – О ОЭО (К) = 0,91

0,91 3,5 С = О ОЭО (Н) = 2,1

Н – О 2,5 ОЭО (С) = 2,5

2,1 3,5 ОЭО (О) = 3,5

ΔОЭО (К–О) = 3,5–0,91=2,59 связь ионная;

ΔОЭО (Н–О) = 3,5–2,1=1,4 связь ковалентная сильнополярная;

ΔОЭО (С–О) = 3,5–2,5=1,0 связь ковалентная слабополярная.

Наибольшую величину разности относительных электроотрицательностей (ΔО.Э.О.) имеет связь К-О и, поэтому, диссоциация обусловлена разрывом этой, наиболее полярной (фактически ионной) связи:

I ступень: КНСО3 " К+ + НСО3-

Диссоциация этого вещества возможна и по второй ступени. Она связана с разрывом достаточно сильно полярной связи Н – О и протекает незначительно:

II cтупень: НСО3- D Н+ + СО32-

Разрыв малополярной связи С - О не происходит.

Важную роль в процессе диссоциации играет растворитель. Чем большей полярностью обладают молекулы растворителя, тем лучше диссоциирует в нем данный электролит, и тем больше степень диссоциации последнего. Если представить диссоциирующее вещество как систему из двух точечных зарядов, то сила взаимодействия ионов (F), на которые диссоциирует данное вещество, определяется в соответствии с законом Кулона:


Эта сила зависит не только от величины зарядов частиц (е 1 и е2) и расстояния между ними (r), но и от природы среды, в которой взаимодействуют частицы. Природа среды характеризуется значением диэлектрической проницаемости (e), которая показывает, во сколько раз сила взаимодействия между зарядами в данной среде меньше, чем в вакууме.

Ниже приведены значения величин диэлектрической проницаемости некоторых растворителей при 25°С.

Вода e = 80

Аммиак жидкий e = 25,4

Этиловый спирт e = 25,2

Бензол e = 2,3

Раствор хлороводорода в бензоле (e = 2,3) практически не диссоциирует и не проводит электрический ток, в то время как в воде (e = 80) хлороводород диссоциирует хорошо и раствор проводит электрический ток.

Повышение температуры, как правило, увеличивает диссоциацию и при нагревании степень диссоциации возрастает.

При уменьшении концентрации электролита, т.е. при разбавлении раствора, степень диссоциации увеличивается. Поэтому, говоря о степени диссоциации, следует указывать концентрацию раствора.

В зависимости от величины степени электролитической диссоциации различают сильные и слабые электролиты.

По величине степени диссоциации в 0,1 н. растворах все электролиты можно подразделить:

a = 0 неэлектролиты,

0<a<3% электролиты слабые,

3%<a<30% электролиты средней силы,

a > 30% электролиты сильные.

К сильным электролитам относятся:

· почти все растворимые соли (СuSО4, BaС12, KВr),

· такие неорганические кислоты, как: HCl, HBr, HI, HClO4, H2SO4, HNO3, HMnO4, HCrO4 и некоторые другие;

· растворимые в воде основания: LiOH, NaOH, KOH, RbOH, CsOH, Ba(OH)2, Sr(OH)2 (кроме гидроксида аммония NH4OH, который является слабым электролитом!)

К слабым электролитам относятся:

· почти все органические кислоты, например, стеариновая С17Н35ООН, уксусная СН3СООН;

· некоторые минеральные кислоты, например, Н2СО3, Н2S, Н2SiO3;

· нерастворимые в воде соли и гидроксиды металлов, например, BaSO4, Ca3(PO4)2, Al(ОН)3, Сu(ОН)2, Fе(ОН)3.

· комплексные катионы или анионы, которые представляют из себя сложные ионы образующиеся при диссоциации в растворе, так называемых, комплексных соединений (солей, кислот и оснований), например: [Al(OH)4]-, [Cu(NH3)4]2- и др.

· К слабым электролитам относится также вода.

Второй количественной характеристикой процесса диссоциации является константа диссоциации (Кд).

Константа диссоциации представляет собой константу равновесия процесса диссоциации слабого электролита и, в отличии от степени диссоциации, не зависит от концентрации растворенного вещества в растворе.

Значения величин констант диссоциации для ряда электролитов приведены в приложении (таблица 8).

Например, циановодородная (синильная) кислота, является слабым электролитом. Как любая кислота она диссоциирует с образованием катионов водорода и анионов кислотного остатка:

HCN D H+ + CN-

Равновесие этого процесса характеризуется соответствующей константой диссоциации.


Малая величина константы диссоциации позволяет судить о незначительном распаде кислоты на ионы и смещении равновесия процесса диссоциации влево.

Равновесие процесса диссоциации в водном растворе такого вещества, как гидроксид аммония, можно представить следующим образом:

NH4OH D NH4+ + OH-


Чем меньше величина константы диссоциации электролита, тем он слабее.

Величины констант диссоциации для ряда слабых электролитов приведены в табл.8 приложения.

Ориентируясь на значение величины константы диссоциации можно делать заключение о силе электролита.


Понравилась статья? Добавь ее в закладку (CTRL+D) и не забудь поделиться с друзьями:  



double arrow
Сейчас читают про: