double arrow

Пример 2.20


Ряд расходится по достаточному признаку расходимости, т. к.

Признаки сходимости рядов с положительными членами:

1. Признак сравнения.

Пусть и ряды с положительными членами. Если

то эти ряды сходятся или расходятся одновременно.

2. Признак Даламбера.Пусть

Если l < 1, то ряд сходится.

Если l > 1, то ряд расходится.

3. Радикальный признак Коши. Пусть

Если l < 1, то ряд сходится.

Если l > 1, то ряд расходится.

4. Интегральный признак Коши.Пусть f(x) − непрерывная, убывающая и положительная на промежутке [1; ∞) функция. Тогда ряд сходится (расходится), если сходится (расходится) интеграл

Заказать ✍️ написание учебной работы
Поможем с курсовой, контрольной, дипломной, рефератом, отчетом по практике, научно-исследовательской и любой другой работой

Сейчас читают про: