Пример 6. Дано: вариант расчетной схемы (рис.15)

Дано: вариант расчетной схемы (рис.15).

Р 1 = 14 кН; Р 2 = 8 кН; q = 10 кн/м; М = 6 кНм; АВ = 0,5 м; ВС = 0,4 м; CD = 0,8 м; DE = 0,3 м; EF = 0,6 м.

Определить реакции в опорах А и F.

Решение. Используя рекомендации примера 3, расставляем реакции в опорах. Их получается четыре (, , , ). Так как в плоской статике для одного тела можно составить только три уравнения равновесия, то для определения реакций необходимо разбить конструкцию на отдельные твердые тела так, чтобы число уравнений и неизвестных совпало. В данном случае можно разбить на два тела АВСD и DEF. При этом в месте разбиения, т. е. в точке D для каждого из двух тел появляются дополнительные реакции, определяемые по виду, числу и направлению так же, как и для точек А и F. При этом по третьему закону Ньютона они равны по значению и противоположно направлены для каждого из тел. Поэтому их можно обозначить одинаковыми буквами (см. рис. 16).

Рис. 15

Далее, как и в примере 3, заменяем распределенную нагрузку q сосредоточенной силой и находим её модуль . Затем выбираем оси координат и раскладываем все силы на рис. 15 и 16 на составляющие параллельные осям. После этого составляем уравнения равновесия для каждого из тел. Всего их получается шесть и неизвестных реакций тоже шесть (, , , , , ), поэтому система уравнений имеет решение, и можно найти модули, а с учетом знака модуля и правильное направление этих реакций (см. пример 3).

Рис. 16. Разбиение конструкции на два тела в точке D, т. е. в месте их соединения скользящей заделкой (трение в ней не учитывается)

Целесообразно так выбирать последовательность составления уравнений, чтобы из каждого последующего можно было определить какую-то одну из искомых реакций. В нашем случае удобно начать с тела DEF, т. к. для него имеем меньше неизвестных. Первым составим уравнение проекций на ось х, из которого найдем R F. Далее составим уравнения проекций на оси у и найдем Y D, а затем уравнение моментов относительно точки F и определим M D. После этого переходим к телу ABCD. Для него первым можно составить уравнения моментов относительно точки А и найти М А, а затем последовательно из уравнений проекций на оси найти X A, Y A. Для второго тела необходимо учитывать свои реакции Y D, M D, взяв их из рис.16, но значения этих реакций уже будут известны из уравнений для первого тела.

При этом значения всех ранее определенных реакций подставляются в последующие уравнения со своим знаком. Таким образом, уравнения запишутся так:

для тела DEF

для тела ABCD

В некоторых вариантах задан коэффициент трения в какой-то точке, например . Это означает, что в этой точке необходимо учесть силу трения , где N A реакция плоскости в этой точке. При разбиении конструкции в точке, где учитывается сила трения, на каждое из двух тел действует своя сила трения и реакция плоскости (поверхности). Они попарно противоположно направлены и равны по значению (как и реакции на рис.16).

Реакция N всегда перпендикулярна плоскости возможного скольжения тел либо касательной к поверхностям в точке скольжения, если там нет плоскости. Сила трения же направлена вдоль этой касательной либо по плоскости против скорости возможного скольжения. Приведенная выше формула для силы трения справедлива для случая предельного равновесия, когда скольжение вот-вот начнется (при непредельном равновесии сила трения меньше этого значения, а определяется её величина из уравнений равновесия). Таким образом, в вариантах задания на предельное равновесие с учетом силы трения к уравнениям равновесия для одного из тел необходимо добавить еще одно уравнение . Там, где учитывается сопротивление качению и задан коэффициент сопротивления качения , добавляются уравнения равновесия колеса (рис.17).

При предельном равновесии

Рис.17

Из последних уравнений, зная G, , R, можно найти N, F тр, T для начала качения без проскальзывания.

В заключение отметим, что разбиение конструкции на отдельные тела проводят в том месте (точке), где имеет место наименьшее число реакций. Часто это невесомый трос или невесомый ненагруженный рычаг с шарнирами на концах, которые соединяют два тела (рис 18).

Рис. 18

Пример 7. Жесткая рама ABCD (рис. 19) имеет в точке А неподвижную шарнирную опору, а в точке б - подвижную шарнирную опору на катках. Все действующие нагрузки и размеры показаны на рисунке.

Дано: F =25 кН, =60º, Р =18 кН, =75º, М= 50 кНм, = 30°, а= 0,5 м.

Определить: реакции в точках A и В, вызы­ваемое действующими нагрузками.

Рис. 19

Указания. Задача – на равновесие тела под действием произвольной плоской системы сил. При ее решении учесть, что натяжения обеих ветвей нити, перекинутой через блок, когда трением пренебрегают, будут одинаковыми. Уравнение моментов будет более простым (содержать меньше неизвестных), если составлять уравнение относительно точки, где пересекаются линии действия двух реакций связей. При вычислении момента силы F часто удобно разложить ее на составляющие F ’ и F ”, для которых плечи легко определяются, и воспользоваться теоремой Вариньона; тогда

Решение. 1. Рассмотрим равновесие пластины. Проведем коорди­натные оси ху и изобразим действующие на пластину силы: силу , пару сил с моментом М, натяжение троса (по модулю T = Р) и реакции связей (реакцию неподвижной шарнирной опоры A изображаем двумя ее составляющими, реакция шарнирной опоры на катках направлена перпендикулярно опорной плоскости).

2. Для полученной плоской системы сил составим три уравнения равновесия. При вычислении момента силы относительно точки A воспользуемся теоремой Вариньона, т.е. разложим силу на состав­ляющие F΄, F˝ (, ) и учтем, что по теореме Вариньона: Получим:

Подставив в составленные уравнения числовые значения заданных величин и решив эти уравнения, определим искомые реакции.

Ответ: X = -8,5кН; Y = -23,3кН; R = 7,3кН. Знаки указывают, что силы XA и YA направлены противоположно силам, показан­ным на рис. 19.

Пример 8. Жесткая рама АBCD (рис.20) имеет в т. А неподвижную шарнирную опору, а т. D прикреплена к невесомому стержню. В т. С к раме привязан трос, перекинутый через блок и несущий на конце груз весом Р =20 кН. На раму действует пара сил с моментом М = 75 кНм и две силы F1 =10 кН и F2=20 кН, составляющие со стержнями рамы углы =300 и =600 соответственно. При определении размеров рамы принять a =0,2 м. Определить реакции связей в точках А и D, вызванные действием нагрузки.

Дано: Р =20 кН, М =75 кНм, F1 =10 кН, F2 =20 кН, =300, =600, =600, a= 0,2м.

Определить: ХА, УА, RD.

Рис. 20

Указания. Задача – на равновесие тела под действием произвольной плоской системы сил. При ее решении следует учесть, что натяжения обеих ветвей нити, перекинутой через блок, когда трением пренебрегают, будут одинаковыми. Уравнение моментов будет более простым (содержать меньше неизвестных), если брать моменты относительно точки, где пересекаются линии действия двух реакций связей. При вычислении момента силы часто удобно разложить ее на составляющие и , для которых плечи легко определяются, и воспользоваться теоремой Вариньона; тогда


Понравилась статья? Добавь ее в закладку (CTRL+D) и не забудь поделиться с друзьями:  



double arrow
Сейчас читают про: