Работа, выполняемая тяжестью

Теперь займемся задачей потруднее, когда силы уже не по­стоянны и не направлены вниз, как раньше. Мы рассмотрим, например, движение планеты вокруг Солнца или спутника во­круг Земли.


Сперва мы рассмотрим движение тела, которое падает из точ­ки 1 прямо на Солнце или на Землю (фиг. 13.2).

Фиг. 13.2. Падение малой массы m под

действием тяжести на боль­шую массу М.

Будет ли в этих обстоятельствах сохраняться энергия? Единственное отличие от того, что было раньше, — что теперь сила не постоян­на, она меняется по мере падения. Мы знаем, что сила равна произведению GM/r2 на массу mпадающего тела. Конечно, и теперь кинетическая энергия при падении возрастает, как воз­растала и тогда, когда нас еще не волновало изменение силы с высотой. Вопрос только в том, можно ли отыскать иную, отлич­ную от mgh, формулу для потенциальной энергии, найти дру­гую функцию расстояния от Земли, чтобы для нее сохранение энергии не нарушалось.


Этот одномерный случай рассматривать легко, потому что мы знаем, что изменение кинетической энергии равно интегралу от начала движения до конца от силы —GMm/r2 по перемеще­нию dr


В формуле нет никакого косинуса, потому что сила и перемеще­ние направлены одинаково. Интегрировать dr/r2 легко; получает­ся (—1/г), так что

Перед нами другая формула для потенциальной энергии. Уравнение (13.12) говорит нам, что величина 1/2 mv2- GMm/r, вычисленная в точке 1, в точке 2 или в любой другой, остается постоянной.


У нас теперь есть формула для потенциальной энергии в поле тяготения для вертикального движения. Здесь возникает интересный вопрос: можно ли добиться вечного движения в поле тяготения? Поле-то меняется, в разных местах у него разная напряженность и разное направление. Нельзя ли взять беско­нечную ленту без трения и запустить ее, скажем, так: пусть она сперва поднимает тело из одной точки в другую, потом проводит его по дуге окружности в третью точку, опускает на неко­торый уровень, сдвигает по наклонному направлению и выводит на новый путь и т. п., так что по возвращении в началь­ную точку оказывается, что поле тяготения совершило неко­торую работу и кинетическая энергия тела возросла? Нельзя ли так начертить эту траекторию, чтобы, обойдя по ней, тело приобрело чуть-чуть больше скорости, чем имело вначале? Так получится вечное движение. Но ведь оно невозможно, значит, мы обязаны доказать, что такая траектория немыслима.

Фиг. 13.3. Замкнутый путь обхода в поле тяготения.

Мы должны доказать следующее предположение: раз трения нет, тело должно вернуться ни с меньшей, ни с большей скоростью, а как раз с такой, чтобы еще и еще делать круги по этому замк­нутому пути. Или, другими словами, вся работа, произведенная в движении по замкнутому пути, должна быть нулем для сил тяжести, потому что если бы она не была нулем, то можно было бы получить энергию за счет такого движения тела. (Если бы работа оказалась меньше нуля, так что скорость в конце обхода уменьшилась бы, то для получения энергии стоило бы только повернуть обратно; силы ведь зависят не от направления дви­жения, а только от положения. Если в одном направлении рабо­та получится с плюсом, то в обратном она будет с минусом; лю­бая ненулевая работа означает создание вечного двигателя.) Так что же, действительно ли работа равна нулю? Попробуем показать, что да. Сперва мы лишь на пальцах поясним, почему это так, а уж потом оформим математически. Положим, мы вы­думали траекторию, показанную на фиг. 13.3; масса падает от 1 к 2, поворачивает до 3, обратно поднимается к 4, затем через 5, 6, 7, 8 движется обратно к 1. Все линии идут либо по радиусу, либо по кругу с центром М. Какая работа совершается на таком пути? Между 1 и 2 она равна произведению GMm
на разность 1/r в этих точках:


От 2 до З сила в точности направлена поперек движения, и W23=0. От 3 к 4


Но ведь r2=r3, r4=r5, r6 =r7, r8=r1. Поэтому W=0.

Но возникает подозрение, не слишком ли эта кривая проста. А что даст настоящая траектория? Что ж, попробуем настоящую. Сразу же ясно, что ее можно достаточно точно пред­ставить как ряд зазубрин (фиг. 13.4) и поэтому... и т. д., что и требовалось доказать.


Фиг. 13.4. «Плавный» путь об­хода.

Показан увеличенный отрезок этого пути и близкая к нему траектория, состоящая из радиальных и круговых участков, а также один из зубцов этой траектории.

Но надо еще посмотреть, действительно ли работа обхода вокруг маленького треугольника тоже равна нулю. Увеличим один из треугольников (см. фиг. 13.4). Равны ли работы по пути от а к b и от b к с работе, совершаемой, когда идешь напрямик от а к с? Пусть сила действует в каком-то направлении. Расположим треугольник так, чтобы у его катета bc было как раз такое направление. Предположим также, что сам треугольник так мал, что сила всюду на нем постоянна. Какова работа на отрезке ас? Она равна



(поскольку сила постоянна). Теперь определим работу на двух катетах. На вертикальном катете ab сила перпендикулярна к ds, так что работа равна нулю. На горизонтальном катете bc

Мы убеждаемся таким образом, что работа обхода по бокам ма­ленького треугольника такая же, как и по склону, потому что scosq равно х. Мы уже показали прежде, что работа при дви­жении по зазубринам (как на фиг. 13.3) равна нулю, а теперь видим, что производимая работа одинакова, независимо от того, движемся ли мы по зазубринам или срезаем путь между ними (если только зазубрины малы, но ведь ничто не мешает сделать их такими); поэтому работа обхода по любому замкну­тому пути в поле тяготения равна нулю.

Это очень примечательный результат. Благодаря ему нам становятся известны такие подробности о движении планет, о которых мы раньше и не догадывались. Выясняется, что когда планета вертится вокруг Солнца одна, без спутников и в отсут­ствие каких-либо других сил, то квадрат ее скорости минус некоторая константа, деленная на расстояние до Солнца, вдоль орбиты не меняется. Например, чем ближе планета к Солнцу, тем быстрее она движется. Но насколько быстрее? А вот на­сколько: если вместо движения вокруг Солнца вы толкнете ее к Солнцу с той же скоростью и подождете, пока она не упадет на нужное расстояние, то приобретенная скорость будет как раз такой, какой планета обладает на этой орбите, потому что полу­чился просто другой пример сложного пути обхода. Если пла­нета вернется по такому пути обратно, ее кинетическая энергия окажется прежней. Поэтому независимо от того, движется ли она по настоящей невозмущенной орбите или же по сложному пути (но без трения), кинетическая энергия в момент возвраще­ния на орбиту оказывается как раз такой, какой нужно.

Значит, когда мы проводим численный анализ движения пла­неты по орбите (как мы делали раньше), мы можем проверить, не сделали ли заметных ошибок при расчете этой постоянной величины, энергии, на каждом шаге; она не должна менять­ся. Для орбиты, приведенной в табл. 9.2 (стр. 170), энергия меняется примерно на 1,5% с начала движения до конца. Почему? То ли потому, что в численном методе мы пользова­лись конечными приращениями, то ли из-за мелких погрешнос­тей в арифметике.

Рассмотрим энергию в другой задаче: задаче о массе, подве­шенной на пружине. Когда отклоняют массу от положения рав­новесия, сила, восстанавливающая ее положение, пропорцио­нальна смещению. Можно ли в этих условиях вывести закон сохранения энергии? Да; потому что работа, совершаемая этой силой, равна


Значит, у массы, подвешенной на пружине, сумма кинетической энергии ее колебаний и

1/2 kx2 постоянна. Посмотрим, как это происходит. Оттянем массу вниз; она неподвижна и скорость ее равна нулю, но х не равно нулю, теперь величина х максималь­на, так что имеется и некоторый запас энергии (потенциальной). Отпустим теперь массу: начнется какой-то процесс (в детали мы не вникаем), но в любое мгновение кинетическая плюс потен­циальная энергии будут постоянны. Например, когда масса проходит через точку первоначального равновесия, то х=0, но тогда значение v2 наибольшее, и чем больше величина x2, тем меньше v 2 и т. д. Значит, во время колебаний соблюдается равновесие между величинами x2 и r2. Мы получили, таким обра­зом, новое правило: потенциальная энергия пружины равна l/2 kx2, если сила равна - kx.


Понравилась статья? Добавь ее в закладку (CTRL+D) и не забудь поделиться с друзьями:  



double arrow
Сейчас читают про: