Общая характеристика методов и средств электрических измерений

 

К электрическим измерениям относятся измерения таких физических величин, как напряжение, сопротивление, сила тока, мощность. Измерения производятся с помощью различных средств – измерительных приборов, схем и специальных устройств. Тип измерительного прибора зависит от вида и размера (диапазона значений) измеряемой величины, а также от требуемой точности измерения. В электрических измерениях используются основные единицы системы СИ: вольт (В), ом (Ом), фарада (Ф), генри (Г), ампер (А) и секунда (с).

Электрическое измерение – это нахождение (экспериментальными методами) значения физической величины, выраженного в соответствующих единицах.

Значения единиц электрических величин определяются международным соглашением в соответствии с законами физики. Поскольку «поддержание» единиц электрических величин, определяемых международными соглашениями, сопряжено с трудностями, их представляют «практическими» эталонами единиц электрических величин.

Эталоны поддерживаются государственными метрологическими лабораториями разных стран. Время от времени проводятся эксперименты по уточнению соответствия между значениями эталонов единиц электрических величин и определениями этих единиц. В 1990 государственные метрологические лаборатории промышленно развитых стран подписали соглашение о согласовании всех практических эталонов единиц электрических величин между собой и с международными определениями единиц этих величин.

Электрические измерения проводятся в соответствии с государственными эталонами единиц напряжения и силы постоянного тока, сопротивления постоянному току, индуктивности и емкости. Такие эталоны представляют собой устройства, имеющие стабильные электрические характеристики, или установки, в которых на основе некоего физического явления воспроизводится электрическая величина, вычисляемая по известным значениям фундаментальных физических констант. Эталоны ватта и ватт-часа не поддерживаются, так как более целесообразно вычислять значения этих единиц по определяющим уравнениям, связывающим их с единицами других величин.

Электроизмерительные приборы чаще всего измеряют мгновенные значения либо электрических величин, либо неэлектрических, преобразованных в электрические. Все приборы делятся на аналоговые и цифровые. Первые обычно показывают значение измеряемой величины посредством стрелки, перемещающейся по шкале с делениями. Вторые снабжены цифровым дисплеем, который показывает измеренное значение величины в виде числа.

Цифровые приборы в большинстве измерений более предпочтительны, так как они более удобны при снятии показаний и, в общем, более универсальны. Цифровые универсальные измерительные приборы («мультиметры») и цифровые вольтметры применяются для измерения со средней и высокой точностью сопротивления постоянному току, а также напряжения и силы переменного тока.

Аналоговые приборы постепенно вытесняются цифровыми, хотя они еще находят применение там, где важна низкая стоимость и не нужна высокая точность. Для самых точных измерений сопротивления и полного сопротивления (импеданса) существуют измерительные мосты и другие специализированные измерители. Для регистрации хода изменения измеряемой величины во времени применяются регистрирующие приборы – ленточные самописцы и электронные осциллографы, аналоговые и цифровые.

Измерения электрических величин являются одними из самых распространённых видов измерений. Благодаря созданию электротехнических устройств, преобразующих различные неэлектрические величины в электрические, методы и средства электрические приборы используются при измерениях практически всех физических величин.

Область применения электроизмерительных приборов:

· научные исследования в физике, химии, биологии и др.;

· технологические процессы в энергетике, металлургии, химической промышленности и др.;

· транспорт;

· разведка и добыча полезных ископаемых;

· метеорологические и океанологические работы;

· медицинская диагностика;

· изготовление и эксплуатация радио и телевизионных устройств, самолётов и космических аппаратов и т.п.

Большое разнообразие электрических величин, широкие диапазоны их значений, требования высокой точности измерений, разнообразие условий и областей применения электроизмерительных приборов обусловили многообразие методов и средств электрических измерений.

Измерение "активных" электрических величин (силы тока, электрического напряжения и др.), характеризующих энергетическое состояние объекта измерений, основывается на непосредственном воздействии этих величин на средство чувствительный элемент и, как правило, сопровождается потреблением некоторого количества электрической энергии от объекта измерений.

Измерение "пассивных" электрических величин (электрического сопротивления, его комплексных составляющих, индуктивности, тангенса угла диэлектрических потерь и др.), характеризующих электрические свойства объекта измерений, требует подпитки объекта измерений от постороннего источника электрической энергии и измерения параметров ответного сигнала.
Методы и средства электрических измерений в цепях постоянного и переменного тока существенно различаются. В цепях переменного тока они зависят от частоты и характера изменения величин, а также от того, какие характеристики переменных электрических величин (мгновенные, действующие, максимальные, средние) измеряются.

Для электрических измерений в цепях постоянного тока наиболее широко применяют измерительные магнитоэлектрические приборы и цифровые измерительные устройства. Для электрических измерений в цепях переменного тока - электромагнитные приборы, электродинамические приборы, индукционные приборы, электростатические приборы, выпрямительные электроизмерительные приборы, осциллографы, цифровые измерительные приборы. Некоторые из перечисленных приборов применяют для электрических измерений как в цепях переменного, так и постоянного тока.

Значения измеряемых электрических величин заключаются примерно в пределах: силы тока - от до А, напряжения - от до В, сопротивления - от до Ом, мощности - от Вт до десятков ГВт, частоты переменного тока - от до Гц. Диапазоны измеряемых значений электрических величин имеют непрерывную тенденцию к расширению. Измерения на высоких и сверхвысоких частотах, измерение малых токов и больших сопротивлений, высоких напряжений и характеристик электрических величин в мощных энергетических установках выделились в разделы, развивающие специфические методы и средства электрических измерений.

Расширение диапазонов измерений электрических величин связано с развитием техники электрических измерительных преобразователей, в частности с развитием техники усиления и ослабления электрических токов и напряжений. К специфическим проблемам электрических измерений сверхмалых и сверхбольших значений электрических величин относятся борьба с искажениями, сопровождающими процессы усиления и ослабления электрических сигналов, и разработка методов выделения полезного сигнала на фоне помех.

Пределы допускаемых погрешностей электрических измерений колеблются приблизительно от единиц до %. Для сравнительно грубых измерений пользуются измерительными приборами прямого действия. Для более точных измерений используются методы, реализуемые с помощью мостовых и компенсационных электрических цепей.

Применение методов электрических измерений для измерения неэлектрических величин основывается либо на известной связи между неэлектрическими и электрическими величинами, либо на применении измерительных преобразователей (датчиков).

Для обеспечения совместной работы датчиков с вторичными измерительными приборами, передачи электрических выходных сигналов датчиков на расстояние, повышения помехоустойчивости передаваемых сигналов применяют разнообразные электрические промежуточные измерительные преобразователи, выполняющие одновременно, как правило, функции усиления (реже, ослабления) электрических сигналов, а также нелинейные преобразования с целью компенсации нелинейности датчиков.

На вход промежуточных измерительных преобразователей могут быть поданы любые электрические сигналы (величины), в качестве же выходных сигналов наиболее часто используют электрические унифицированные сигналы постоянного, синусоидального или импульсного тока (напряжения). Для выходных сигналов переменного тока используется амплитудная, частотная или фазовая модуляция. Всё более широкое распространение в качестве промежуточных измерительных преобразователей получают цифровые преобразователи.

Комплексная автоматизация научных экспериментов и технологических процессов привела к созданию комплексных средств измерительных установок, измерительно-информационных систем, а также к развитию техники телеметрии, радиотелемеханики.

Современное развитие электрических измерений характеризуется использованием новых физических эффектов. Например, в настоящее время для создания высокочувствительных и высокоточных электроизмерительных приборов применяются квантовые эффекты Джозефсона, Холла и др. В технику измерений широко внедряются достижения электроники, используется микроминиатюризация средств измерений, сопряжение их с вычислительной техникой, автоматизация процессов электрических измерений, а также унификация метрологических и других требований к ним.

Читайте также:

Методы и средства измерений электрических величин. Введение

Шунты, добавочные резисторы

Устройство и принцип работы электронно-счетного частотомера

Измерение магнитной индукции и напряженности магнитного поля

Принцип работы электромеханических омметров

Вернуться в оглавление: Методы и средства измерений электрических величин


double arrow
Сейчас читают про: