Наибольшее и наименьшее значение функции на незамкнутом интервале

Теорема. Пусть функция y= f(x) непрерывна на промежутке x, и имеет внутри этого промежутка единственную стационарную или критическую точку x= x0, тогда:
а) если x= x0 – точка максимума, то yнаиб.= f(x0).
б) если x= x0 – точка минимума, то yнаим.= f(x0).

Пример. Найти наибольшее и наименьшее значение функции y= + 2x2 + 4x - 5 на отрезке
а) [-9;-1], б) [-3;3], в) [3;9].
Решение: Найдем производную: y'= x2 + 4x + 4.
Производная существует на всей области определения, тогда нам надо найти стационарные точке.
y'= 0, при x= -2.
Дальнейшие расчеты проведем для требуемых отрезков.
а) Найдем значения функции на концах отрезка и в стационарной точки.
Тогда yнаим.= -122, при x= -9; yнаиб.= y = -7 при x= -1.
б) Найдем значения функции на концах отрезка и в стационарной точке. Наибольшее и наименьшее значение достигается на концах отрезка.
Тогда yнаим.= -8, при x= -3, yнаиб.= 34, при x= 3.
в) Стационарная точка не попадает на наш отрезок, найдем значения на концах отрезка.
Тогда yнаим.= 34, при x= 3, yнаиб.= 436, при x= 9.

Промежутки возрастания и убывания:

Если на промежутке I производная функции , то функция возрастает на этом промежутке.

Если на промежутке I производная функции , то функция убывает на этом промежутке.

 Находим точки максимума и минимума функции.

В точке максимума функции производная меняет знак с "+" на "-".

В точке минимума функции производная меняет знак с "-" на "+".

Значение функции в концах отрезка:

  • затем сравниваем значение функции в концах отрезка и в точках максимума, и выбираем из них наибольшее, если нужно найти наибольшее значение функции
  • или сравниваем значение функции в концах отрезка и в точках минимума, и выбираем из них наименьшее, если нужно найти наименьшее значение функции

Однако, в зависимости от того, как себя ведет функция на отрезке, это алгоритм можно значительно сократить.

Рассмотрим функцию . График этой функции выглядит так:

В зависимости от того, на каком промежутке мы будем рассматривать функцию, алгоритм нахождения наибольшего или наименьшего значения будет различным.

1. Рассмотрим функцию на отрезке

Функция возрастает на этом отрезке, поэтому наибольшее значение она будет принимать в правом конце отрезка: , а наименьшее - в левом: .

2. Рассмотрим функцию на отрезке

Очевидно, что наибольшее значение функция принимает в точке максимума , а наименьшее - в одном из концов отрезка, то есть надо найти значения и и выбрать из них наименьшее.

3. Если мы рассмотрим функцию на отрезке , то чтобы найти наибольшее значение, нам нужно будет сравнить значения функции в точке максимума и в правом конце отрезка, то есть и .

Чтобы найти наименьшее значение функции, нам нужно будет сравнить значения функции в точке минимума и в левом конце отрезка, то есть и .

Эти рассуждения очевидны, если перед глазами есть график функции. Но эскиз графика легко нарисовать, проведя исследование функции с помощью производной:

1. ОДЗ функции - множество действительных чисел.

2.

3. , если или

 

Нанесем корни производной на числовую ось и расставим знаки. Теперь поведение функции легко определить, и, следуя за стрелками, символизирующими возрастание - убывание, можно схематично изобразить ее график:

 

Рассмотрим несколько примеров решения задач из Открытого банка заданий для подготовки к ЕГЭ по математике











Задание B15 (№ 26695)

Найдите наибольшее значение функции на отрезке .

1. Функция определена при всех действительных значениях х

2.

3.

Очевидно, что это уравнений не имеет решений, и производная при всех значениях х положительна. Следовательно, функция возрастает и принимает наибольшее значение в правом конце промежутка, то есть при х=0.

y(0)=5 .                Ответ: 5.

 

2. Задание B15 (№ 26702)

Найдите наибольшее значение функции на отрезке [ ].

1. ОДЗ функции

2.

Производная равна нулю при , однако, в этих точках она не меняет знак:

, следовательно, , значит, , то есть производная при всех допустимых значениях х неотрицательна, следовательно, функция возрастает и принимает наибольшее значение в правом конце промежутка, при .

Чтобы стало очевидно, почему производная не меняет знак, преобразуем выражение для производной следующим образом:

у(0)=5

Ответ: 5.

Задание B15 (№ 26708)

Найдите наименьшее значение функциина отрезке [].

1. ОДЗ функции :

2.

3.

,

Расположим корни этого уравнения на тригонометрической окружности.

Промежутку принадлежат два числа: и

Расставим знаки. Для этого определим знак производной в точке х=0: . При переходе через точки и производная меняет знак.

Изобразим смену знаков производной функции на координатной прямой:

Очевидно, что точка является точкой минимума (в ней производная меняет знак с "-" на "+"), и чтобы найти наименьшее значение функции на отрезке , нужно сравнить значения функции в точке минимума и в левом конце отрезка, .

Схитрим: так как результат должен быть целым числом, или конечной десятичной дробью, а таковым на является, следовательно подставим в уравнение функции

Ответ: -1


Понравилась статья? Добавь ее в закладку (CTRL+D) и не забудь поделиться с друзьями:  



double arrow
Сейчас читают про: