Химический синтез ДНК

Первый химический синтез гена, осуществленный более 20 лет назад, потребовал многолетней напряженной работы. В промышленных лабораториях уже синтезированы гены инсулина и интерферона. Произведен синтез гена для фермента рибо-нуклеозы, открывающей возможность изменять желаемым образом физические и химические свойства белка. Однако самыми современными методами получаются фрагменты генов длиной в сотни пар оснований, а для дальнейших исследований нужны фрагменты в 100 и более раз длиннее.

Успехи генной инженерии.

Современная молекулярная биология позволяет вводить почта любой отрезок ДНК в микроорганизм, чтобы заставить его синтезировать тот белок, который кодирует данная ДНК. А соломенная органическая химия дает возможность синтезировать последовательности нуклеотидов - фрагменты генов. Такие фрагменты генов можно применять для изменения исходной последо-тельности

29. Сверхпроводимость; ВТСП, перспективы их использования.

Сверхпроводимость — свойство некоторых материалов обладать строго нулевым электрическим сопротивлением при достижении ими температуры ниже определённого значения. Существует множество чистых элементов, сплавов и керамик, переходящих в сверхпроводящее состояние. Каждый материал обладает своей критической температурой перехода в сверхпроводящее состояние (Тк). Известные ныне критические температуры изменяются в пределах от 0,0005 К у магния (Mg) до 39 К у диборида магния (MgB2) у низкотемпературных сверхпроводников (Тк ниже 77 К, температуры кипения жидкого азота), до примерно 135 К у ртутьсодержащих высокотемпературных сверхпроводников.

Явление сверхпроводимости используется для получения сильных магнитных полей, поскольку при прохождении по сверхпроводнику сильных токов, создающих сильные магнитные поля, отсутствуют тепловые потери. Существуют детекторы фотонов на сверхпроводниках. Вихри в сверхпроводниках второго рода можно использовать в качестве ячеек памяти. Подобное применение уже нашли некоторые магнитные солитоны.

30. Новые вещества (фуллерены, нанотрубки, металлический водород, трансурановые элементы и т.д.).

Фуллерены, — молекулярные соединения, принадлежащие классу аллотропных форм углерода (другие — алмаз, карбин и графит) и представляющие собой выпуклые замкнутые многогранники, составленные из чётного числа трёхкоординированных атомов углерода. Своим названием эти соединения обязаны инженеру и дизайнеру Ричарду Бакминстеру Фуллеру, чьи геодезические конструкции построены по этому принципу. В молекулах фуллеренов атомы углерода расположены в вершинах правильных шести- и пятиугольников, из которых составлена поверхность сферы или эллипсоида. Фуллерены обладают нелинейными оптическими свойствами, что позволяте использовать их в оптике, в частности, в оптических затворах. Молекулярный кристалл фуллерена является полупроводником с шириной запрещённой зоны ~1.5 эВ и его свойства во многом аналогичны свойствам других полупроводников, поэтому ряд исследований был связан с вопросами использования фуллеренов в качестве нового материала для традиционных приложений в электронике: диод, транзистор, фотоэлемент и т. п. Другой интересной возможностью практического применения является использование фуллереновых добавок при росте алмазных плёнок CVD-методом (Chemical Vapor Deposition). Высокое быстродействие (высокая насыщенная дрейфовая скорость); максимальная, по сравнению с любыми другими известными материалами, теплопроводность и химическая стойкость делают алмаз перспективным материалом для электроники следующего поколения.

Углеродные нанотрубки — это протяжённые цилиндрические структуры диаметром от одного до нескольких десятков нанометров и длиной до нескольких сантиметров, состоящие из одной или нескольких свёрнутых в трубку гексагональных графитовых плоскостей и заканчивающиеся обычно полусферической головкой. Нанотрубки могут быть как однослойные, так и многослойные. Возможные применения нанотрубок: механические (сверхпрочные нити, композитные материалы, нановесы), микроэлектроника (транзисторы, нанопровода, прозрачные проводящие поверхности, топливные элементы), нейрокомпьютерные разработки, капиллярные применения (капсулы для активных молекул, хранение металлов и газов, нанопипетки), оптические применения (дисплеи, светодиоды), медицина.

Металлический водород, согласно моделям, является сверхпроводником при комнатной температуре. Некоторые прогнозы гласят, что можно добиться его устойчивости даже при нормальном давлении. А это сулит большие перспективы в области энергетики. Однако для формирования металлического водорода необходимо давление порядка 3-4 (или даже чуть выше — зависит от условий) миллионов атмосфер. А это — больше, чем в центре Земли. Перспективным материалом для моделирования металлического водорода считается моносилан (SiH4). Он богат водородом, а для его фазового перехода нужно хотя и очень высокое давление, но всё же меньшее, чем требуется для "обращения" самого водорода. В частности, учёные на опыте доказали, что под большим давлением силан превращается в металл, а при дальнейшем сжатии и охлаждении — в сверхпроводник.

Трансурановые элементы (заурановые элементы, трансураны) — радиоактивные химические элементы, расположенные в периодической системе элементов Д. И. Менделеева за ураном, то есть с атомным номером выше 92. Все известные изотопы трансурановых элементов имеют период полураспада значительно меньший, чем возраст Земли. Поэтому трансурановые элементы практически отсутствуют в природе и получаются искусственно посредством различных ядерных реакций. Из всех трансурановых элементов наибольшее применение нашел нуклид плутония 239Pu как ядерное топливо.


Понравилась статья? Добавь ее в закладку (CTRL+D) и не забудь поделиться с друзьями:  



double arrow
Сейчас читают про: