Элементарные частицы и фундаментальные взаимодействия

Фундаментальные взаимодействия — качественно различающиеся типы взаимодействия элементарных частиц и составленных из них тел.

Гравитационное взаимодействие - сила всемирного тяготения действует на все тела и частицы. По сравнению с другими взаимодействиями оно очень мало и в мире элементарных частиц практически не сказывается. Тяготение становится заметным только на больших расстояниях (где другие силы не сказываются) и для тел большой массы.

Электромагнитные силы, в отличие от гравитационных, действуют не на все тела и частицы, а только на электрически заряженные. Было время, когда электрические и магнитные явления, известные с незапамятных времен, рассматривались как две различные силы. Но затем была установлена тесная взаимосвязь между ними: движение электрических зарядов порождает магнитное поле, а изменение магнитного поля создает электрический ток. В теории Максвелла (XIX век) электрические и магнитные явления были объединены в единое электромагнитное взаимодействие.

Еще более специфическим является слабое взаимодействие. Оно характеризует все типы процессов с участием нейтрино, в частности радиоактивный распад. В отличие от гравитационного и электромагнитного взаимодействий, которые изменяют только внешнее состояние движения частиц, слабое взаимодействие изменяет внутреннюю природу самих частиц (например, нейтрон превращается в протон, электрон и нейтрино). В обычных условиях оно слабее электромагнитного (и тем более сильного) - отсюда и его название.

Наконец, сильное взаимодействие характеризует ядерные силы, которые удерживают протоны и нейтроны в атомных ядрах.

Важной особенностью слабых и сильных взаимодействий является то, что они проявляются только на очень маленьких расстояниях. Радиус действия ядерных сил порядка 10-13 см, а для слабых взаимодействий - порядка 10-16 см. Поэтому в масштабах макромира эти взаимодействия не сказываются. Здесь действуют только гравитационные и электромагнитные силы.

30. Генная теория

Генетика - наука о законах и механизмах наследственности и изменчивости. Часть общей биологии. Её достижения используются в области генной инженерии.

Первоначально генетика изучала общие законы наследственности и изменчивости на основании фенотипических данных. Понимание механизмов наследственности, то есть роли генов как элементарных носителей наследственной информации, хромосомная теория наследственности и т. д. стало возможным с применением к проблеме наследственности методов цитологии, молекулярной биологии и других смежных дисциплин. Сегодня известно, что гены реально существуют и являются специальным образом отмеченными участками ДНК или РНК — молекулы в которой закодирована вся генетическая информация. У эукариотических организмов ДНК свёрнута в хромосомы и находится в ядре клетки. Кроме того, собственная ДНК имеется внутри митохондрий и хлоропластов (у растений). У прокариотических организмов ДНК, как правило, замкнута в кольцо (бактериальная хромосома, или генофор) и находится в цитоплазме. Часто в клетках прокариот присутствует одна или несколько молекул ДНК меньшего размера — плазмид.

36. Структурные уровни организации материи. Микро-, макро-, мегамиры.

Материя – это бесконечное множество всех существующих в мире объектов и систем, субстрат любых свойств, связей, отношений и форм движения. Материя включает в себя не только все непосредственно наблюдаемые объекты и тела природы, но и все те, которые в принципе могут быть познаны в будущем на основе совершенствования средств наблюдения и эксперимента. С точки зрения марксистско-ленинского понимания материи, она органически связана с диалектико-материалистическим решением основного вопроса философии; оно исходит из принципа материального единства мира, первичности материи по отношению к человеческому сознанию и принципа познаваемости мира на основе последовательного изучения конкретных свойств, связей и форм движения материи.

Микромир – это молекулы, атомы, элементарные частицы — мир предельно малых, непосредственно не наблюдаемых микрообъектов, пространственная разномерность которых исчисляется от 10-8 до 10-16 см, а время жизни — от бесконечности до 10-24 с.
Макромир — мир устойчивых форм и соразмерных человеку величин, а также кристаллические комплексы молекул, организмы, сообщества организмов; мир макрообъектов, размерность которых соотносима с масштабами человеческого опыта: пространственные величины выражаются в миллиметрах, сантиметрах и километрах, а время — в секундах, минутах, часах, годах.
Мегамир — это планеты, звездные комплексы, галактики, метагалактики – мир огромных космических масштабов и скоростей, расстояние в котором измеряется световыми годами, а время существования космических объектов — миллионами и миллиардами лет.
И хотя на этих уровнях действуют свои специфические закономерности, микро-, макро - и мегамиры теснейшим образом взаимосвязаны.

38. Ноосфера — современная (по меркам геологического времени) стадия развития биосферы, связанная с появлением в ней человека. Понятие было введено французским математиком и философом Эдуаром Леруа в 1927 году. Сам он подчёркивал, что пришёл к этой идее совместно со своим другом — крупнейшим геологом и палеонтологом-эволюционистом и (одновременно!) католическим философом Пьером Тейяром де Шарденом. При этом Леруа и Шарден основывались на лекциях по геохимии, которые в 1922/1923 годах читал в Сорбонне Владимир Иванович Вернадский (1863—1945). С именем Вернадского и связано в первую очередь появление ноосферного учения.

В ноосферном учении Человек предстаёт укоренённым в Природу, а «искусственное» рассматривается как органическая часть и один из факторов (усиливающийся во времени) эволюции «естественного». Обобщая с позиции натуралиста человеческую историю, Вернадский делает вывод о том, что человечество в ходе своего развития превращается в новую мощную геологическую силу, своей мыслью и трудом преобразующую лик планеты. Соответственно, оно в целях своего сохранения должно будет взять на себя ответственность за развитие биосферы, превращающейся в ноосферу, а это потребует от него определённой социальной организации и новой, экологической и одновременно гуманистической этики.

Ноосферу можно охарактеризовать как единство «природы» и «культуры». Сам Вернадский говорил о ней то как о реальности будущего, то как о действительности наших дней, что неудивительно, поскольку он мыслил масштабами геологического времени. «Биосфера не раз переходила в новое эволюционное состояние… — отмечает В. И. Вернадский. — Это переживаем мы и сейчас, за последние 10-20 тысяч лет, когда человек, выработав в социальной среде научную мысль, создаёт в биосфере новую геологическую силу, в ней не бывалую. Биосфера перешла или, вернее, переходит в новое эволюционное состояние — в ноосферу — перерабатывается научной мыслью социального человека» («Научная мысль как планетное явление»). Таким образом, понятие «ноосфера» предстаёт в двух аспектах:

1. ноосфера в стадии становления, развивающаяся стихийно с момента появления человека;

2. ноосфера развитая, сознательно формируемая совместными усилиями людей в интересах всестороннего развития всего человечества и каждого отдельного человека.


31. Понятие живого

Живые организмы и тела неживой природы состоят из одних и тех же химических элементов. В клетках живых организмов обнаружено свыше 60 элементов периодической системы. Сходство органического и неорганического мира на атомном уровне указывает на связь и единство живой и неживой природы. И вместе с тем в силу качественного своеобразия живого мы без труда одни тела относим к живым, другие - к неживым.

К свойствам живого обычно относят: обмен веществ, способность к росту, индивидуальному развитию, воспроизведению себе подобных, способность к эволюционному развитию, раздражимость, подвижность. Наличие лишь некоторых из этих свойств не является, однако, достаточным для определения жизни. Ледник или река характеризуются ростом, подвижностью, обменом веществ, развитием, но они не способны к воспроизведению себе подобных. В насыщенных растворах при внесении туда кристалла идет образование новых кристаллов, подобных внесенному. Однако кристаллы нельзя отнести к живым телам, так как, несмотря на способность к воспроизведению, они не могут эволюционировать - форма кристаллов определяется строением из атомов и не может изменяться. Звезды, планеты, звездные системы (галактики) рождаются, стареют и умирают, т.е. эволюционируют, они подвижны и даже могут образовывать новые звезды, но эти новые образования не будут подобны исходным. С другой стороны, мы, не задумываясь, к живому относим растения, хотя подвижность многим из них не свойственна. Таким образом, лишь комплекс свойств: раздражимость, обмен веществ, способность к росту, индивидуальному и историческому развитию, воспроизведению себе подобных - может считаться необходимым и достаточным для определения жизни.

Основываясь на важнейших признаках живого, известных науке конца XIX в., Ф. Энгельс дал определение жизни, ставшее классическим: "Жизнь есть способ существования белковых тел, существенным моментом которого является постоянный обмен веществ с окружающей их внешней природой, причем с прекращением этого обмена веществ прекращается и жизнь, что приводит к разложению белка".

Только в 50-х годах нашего столетия стало ясно, что жизнь связана не только с белками, но и с нуклеиновыми кислотами - носителями наследственной информации.

Исходя из определения жизни Ф. Энгельсом, некоторые ученые были склонны считать живыми уже единичные молекулы белка. Но нельзя согласиться с этой точкой зрения, так как белки не обладают способностью к самовоспроизведению и обмену веществ. Следовательно, образование белка в результате химического процесса не равносильно возникновению жизни.

Свойством воспроизведения себе подобных обладают нуклеиновые кислоты и даже отдельные фрагменты молекулы ДНК. Можно ли их считать носителями жизни? Экспериментально доказано, что самокопирование ДНК и реализация заключенной в ней информации происходит только при наличии ферментов, источников энергии - молекул АТФ, воды и других соединений, а также при условии изоляции реакций от среды и связи с окружающим миром. Очевидно, отдельные молекулы нуклеиновых кислот тоже не являются живыми.

32. Химия в системе наук

Химия - это одна из важнейших и обширных областей естествознания, наука о веществах, их свойствах, строении и превращениях, происходящих в результате химических реакций, а также фундаментальных законах, которым эти превращения подчиняются. Поскольку все вещества состоят из атомов, которые благодаря химическим связям способны формировать молекулы, то химия занимается в основном изучением взаимодействий между атомами и молекулами, полученными в результате таких взаимодействий.

Предмет химии — химические элементы и их соединения, а также закономерности, которым подчиняются различные химические реакции.

Химическая связь — явление взаимодействия атомов, обусловленное перекрыванием электронных облаков связывающихся частиц, которое сопровождается уменьшением полной энергии системы. Существует:

1. Ионная связь. Когда внешние электронные слои полностью заполнены, общая энергия атомов понижается.

2. Ковалентная связь - Когда два атома достаточно приближаются друг к другу, между ними возникает взаимодействие, которое можно рассматривать как длительный взаимный обмен электронами. В соответствии с законами квантовой механики, такой обмен электронами вызывает силу притяжения, которая и удерживает атомы вместе.

3. Металлическая связь - В металлах образуется химическая связь еще одного вида. Каждый атом в металле отдает один или два подвижных электрона, как бы делясь этими электронами со всеми соседними атомами металла. Эти квазисвободные электроны образуют что-то вроде желе, в котором располагаются тяжелые положительные ионы металла. Все это напоминает трехмерную пространственную решетку из стеклянных шариков в вязкой патоке — если толкнуть один из таких шариков, он слегка сдвинется, но сохранит свое положение относительно других. Точно так же атомы металла, потревоженные внешним механическим воздействием, останутся связанными друг с другом благодаря «электронному желе» (или «электронному газу»).

4. Водородная связь - это не химическая связь, скорее это, притяжение между отдельными молекулами. Многие молекулы, хотя и являются в целом нейтральными, оказываются поляризованными. Это значит, что некоторые части таких молекул имеют суммарный отрицательный заряд, в то время как другие части — положительный. Самая известная полярная молекула — это молекула воды. Отрицательный заряд собирается вокруг атома кислорода, приводя к образованию слабого положительного заряда около атомов водорода. Благодаря такой поляризации вода является хорошим растворителем. Связи, создаваемые посредством положительно заряженных атомов водорода, называются водородными связями. Поскольку молекул водорода очень много в биологических молекулах, водородные связи в них образуются достаточно часто. В частности, именно водородные связи удерживают вместе две спирали молекулы ДНК.

В химии принято разделять все объекты изучения на индивидуальные вещества (иначе — соединения) и их смеси. Под индивидуальным веществом понимают абстрактное понятие, обозначающее набор атомов, связанных друг с другом по определённому закону.

Неорганические вещества Соли;Кислоты; Основания; Органические вещества Кетоны и альдегиды; Кислоты и ангидриды; Спирты; Углеводороды; Простые эфиры; Сложные эфиры;

Вещество может существовать в трех фазах: твердой, жидкой и газообразной. В жидкой и газообразной фазах молекулы вещества могут свободно двигаться, в твердой же фазе положение молекул фиксированно, и они могут лишь совершать колебания около своего среднего положения.

Элементарная частица: Это все частицы, не являющиеся атомными ядрами или атомами (протон — исключение). В узком смысле — частицы, которые нельзя считать состоящими из других частиц (при заданной энергии воздействия/наблюдения).Элементарными частицами также являются электроны (-) и позитроны (+).

Атом: Наименьшая частица химического элемента, обладающая всеми его свойствами. Атом состоит из ядра и «облака» электронов вокруг него. Ядро состоит из положительно заряженных протонов и нейтральных нейтронов. Взаимодействуя, атомы могут образовывать молекулы. Атом — предел химического разложения любого вещества. Простое вещество (если оно не является одноатомным, как, например, гелий He) разлагается на атомы одного вида, сложное вещество — на атомы разных видов. Атомы неделимы химическим путём.

Молекула: Частица, состоящая из двух или более атомов, которая может самостоятельно существовать. Имеет постоянный качественный и количественный состав. Её свойства зависят от атомов, входящих в её состав, и от характера связей между ними, и от их пространственного расположения (изомеры). Может иметь несколько разных состояний и переходить от одного состояния к другому под действием внешних факторов. Свойства вещества, состоящего из определённых молекул, зависят от состояния молекул и от свойств молекулы.

Химический элемент — это вид атомов с определённым положительным зарядом ядра. Все химические элементы указаны в Периодической системе элементов Д. И. Менделеева; каждому элементу отвечает свой порядковый (атомный) номер в Периодической системе. Значение порядкового номера элемента и значение заряда ядра атома того же элемента совпадают, то есть химический элемент — это совокупность атомов с одинаковым порядковым номером.

Металлы и неметаллы: Все химические элементы по их свойствам, то есть свойствам свободных атомов и свойствам образуемых элементами простых и сложных веществ, делят на металлические и неметаллические элементы. Условно к неметаллам относят элементы He, Ne, Ar, Kr, Xe, Rn, F, Cl, Br, I, At, O, S, Se, Te, N, P, As, C, Si, B и H. Остальные элементы считаются металлами.

39. Человек, биосфера и космические циклы

Биосфера — оболочка Земли, заселённая живыми организмами, находящаяся под их воздействием и занятая продуктами их жизнедеятельности; «пленка жизни»; глобальная экосистема Земли.

Термин «биосфера» был введён в биологии Жаном-Батистом Ламарком в начале XIX в., а в геологии предложен австрийским геологом Эдуардом Зюссом в 1875 году.

Целостное учение о биосфере создал русский биогеохимик и философ В. И. Вернадский. Он впервые отвёл живым организмам роль главнейшей преобразующей силы планеты Земля, учитывая их деятельность не только в настоящее время, но и в прошлом.

Существует и другое, более широкое определение: Биосфера — область распространения жизни на космическом теле. При том что существование жизни на других космических объектах, помимо Земли пока неизвестно, считается что биосфера может распространяться на них в более скрытых областях, например, в литосферных полостях или в подлёдных океанах. Так, например, рассматривается возможность существования жизни в океане спутника Юпитера Европы.

Владимир Иванович Вернадский (28 февраля 1863(18630312) — 6 января 1945) — выдающийся русский и советский учёный XX века, естествоиспытатель, мыслитель и общественный деятель; создатель многих научных школ.

В структуре биосферы Вернадский выделял семь видов вещества:

1. живое;

2. биогенное (возникшее из живого или подвергшееся переработке);

3. косное (абиотическое, образованное вне жизни);

4. биокосное (возникшее на стыке живого и неживого; к биокосному, по Вернадскому, относится почва);

5. вещество в стадии радиоактивного распада;

6. рассеянные атомы;

7. вещество космического происхождения.

Александр Леонидович Чижевский (26 января 1897 — 20 декабря 1964) — советский биофизик, основоположник гелиобиологии.

В начале 20 века ученый доказал зависимость биологических и социальных процессов на Земле от цикла колебаний солнечной активности, составляющего около 11 лет.

Гелиобиология, раздел биофизики, изучающий влияние изменений активности Солнца на земные организмы. Основоположник Гелиобиологии - советский физик А. Л. Чижевский (его первая работа в этой области вышла в 1915). Однако, на связь между колебаниями активности Солнца и многими проявлениями жизнедеятельности у обитателей Земли указывали до него шведский учёный С. Аррениус и др. Колебания солнечной активности, сопровождающиеся периодическим увеличением количества пятен и хромосферными вспышками (цикл в среднем 11 лет), ведут к изменению интенсивности рентгеновского, ультрафиолетового и радиоизлучения Солнца, а также испускаемых им потоков корпускулярных частиц. Циклические колебания солнечного излучения отражаются на жизнедеятельности земных организмов. Так, установлено влияние изменений солнечной активности на рост годичных слоев деревьев и урожайность зерновых, размножение и миграцию насекомых, рыб и др. животных, на возникновение и обострение ряда заболеваний у человека и животных. Крупные исследования по Гелиобиологии выполнены советскими учёными. А. Л. Чижевский установил связь возникновения эпидемий и эпизоотий, обострений нервных и психических заболеваний и ряда др. биологических явлений с изменениями солнечной активности. Врач С. Т. Вельховер показал изменения окрашиваемости и болезнетворности некоторых микроорганизмов при солнечных вспышках. Энтомолог Н. С. Щербиновский наблюдал, что периодичность налётов саранчи соответствует ритму Солнца (т. е. повторяется каждые 11 лет). Гематолог Н. А. Шульц установил влияние перепадов активности Солнца на число лейкоцитов в крови человека и относительный лимфоцитоз. Итальянский физико-химик Дж. Пиккарди обнаружил влияние различных физических факторов, и в частности изменений активности Солнца, на состояние коллоидных растворов. Японский гематолог М. Таката разработал пробу на осаждение белков крови, чувствительную к изменениям активности Солнца. Врач М. Фор и др. показали, что учащение внезапных смертей и обострений хронических заболеваний связано с повышением солнечной активности; Фор организовал первую в мире «медицинскую службу Солнца». Исследования по Гелиобиологии включают: 1) изучение корреляции изменений определённого биологического показателя (по статистическим данным) с колебаниями активности Солнца; 2) испытания на различных биологических объектах действия условий, моделирующих отдельные факторы солнечной активности.

41. Корпускулярно-волновой дуализм

физический принцип, согласно которому любой объект может проявлять как волновые, так и корпускулярные свойства. Был введён при разработке квантовой механики для объяснения явлений, наблюдаемых в микромире.

В частности, свет — это и корпускулы (фотоны), и электромагнитные волны. Свет демонстрирует свойства волны в явлениях дифракции и интерференции при масштабах, сравнимых с длиной световой волны. Например, одиночные фотоны, проходящие через двойную щель, создают на экране интерференционную картину, определяемую уравнениями Максвелла. Тем не менее, эксперимент показывает, что фотон не есть короткий импульс электромагнитного излучения, например, он не может быть разделён на несколько пучков оптическими делителями лучей. Корпускулярные свойства света проявляются при фотоэффекте и в эффекте Комптона. Фотон ведет себя и как частица, которая излучается или поглощается целиком объектами, размеры которых много меньше его длины волны (например, атомными ядрами), или вообще могут считаться точечными (например, электрон).

42. Квантовая механика и строение атома

Квантовая механика и Квантово-Полевая картина мира (КПКМ)
В основе современной КПКМ лежит новая физическая теория – квантовая механика, описывающая состояние и движение микрообъектов. Это – четвертая (после механики, электродинамики и теории относительности) фундаментальная физическая теория. Она является базой для развития современного естествознания.
В основе квантовой механики лежат фундаментальные идеи о квантовании физических величин и корпускулярно-волновом дуализме.
В 1900 г. Макс Планк (1858-1947) предложил следующую гипотезу (впоследствии названную квантовой гипотезой Планка): электромагнитное излучение испускается отдельными порциями – квантами, величина которых пропорциональна частоте излучения. Гипотеза Планка фактически стала началом новой физики – квантовой физики (старая при этом получила название классической).

Модели строения атома.
В 1903 г. Томсон предлагает свою модель атома – «пудинг с изюмом». Но опыты Резерфорда по бомбардировке тончайшей золотой фольги (слой не более 1000 атомов) альфа-частицами показали, что модель атома Томсона неверна – нет того отражения и рассеивания частиц, которые следовали бы из модели Томсона.
В 1913 г. появляется «планетарная модель» атома Бора-Резерфорда. Но заряженные электроны, вращаясь вокруг ядра, должны постоянно излучать электромагнитные волны, терять энергию, тормозиться и очень скоро упасть на ядро. Нильс Бор приходит к выводу, что электроны могут излучать энергию только определенными порциями – квантами (по Планку), поэтому постоянного излучения нет, и электроны энергию не теряют.
Современная модель атома. Ядро состоит из протонов и нейтронов приблизительно в равном количестве. Число протонов определяет порядковый номер элемента. 1- водород, 2- гелий, 8- кислород и т.д. Атомы, различающиеся числом нейтронов – изотопы. Ядро окружено электронным облаком, причем поведение каждого электрона в облаке описывается вероятностным волновым уравнением Шредингера. Нельзя предсказать точно, где электрон находится, можно только строить распределение вероятностей его нахождения.


Понравилась статья? Добавь ее в закладку (CTRL+D) и не забудь поделиться с друзьями:  




Подборка статей по вашей теме: