double arrow

Интегральные компоненты

Значительно большее разнообразие конструкций корпусов наблюдается у микросхем. Можно выделить 4 типа корпусов:

1. С вертикальными выводами, расположенными перпендикулярно плоскости корпуса ИМ (DIP, PGA).

2. С плоскими выводами, выходящими параллельно корпусу ИМ (Flat Pack – SO, PLCC, QFP, TAB).

3. Безвыводные корпуса (металлизация контактных площадок на боковых стенках корпуса - LCCC).

4. С шариковыми выводами на нижней плоскости корпуса (BGA – Ball Grid Array, flip-chip).

Конструкция корпусов ИМ первой группы характерна для традиционного монтажа, поскольку требует наличия на плате установочных отверстий, в которые микросхема запаивается, или так называемых «кроваток» - установочных панелей, в которые микросхема вставляется без пайки.

Рис. 15.1.3.

Корпуса DIP изготавливаются с шагом выводов 2,5 мм, количество выводов от 16 до 64, масса от 1 до 12 г. Корпуса PGA применяются для микропроцессоров и ИМ высокой степени интеграции. Как правило, они весьма дороги и устанавливаются в «кроватки» (socket). Шаг между выводами не менее 2,5 мм, количество выводов от 68 до 387. На корпусе могут располагаться пассивные чип-компоненты для развязки электрических цепей. Корпуса PGA изготавливаются из керамики или пластмассы и используются, как правило, с принудительным охлаждением (вентилятор на верхней крышке). При большом количестве выводов микросхемы имеют существенные массо-габаритные показатели (масса до 84 г, размеры до 66х66 мм).

Рис. 15.1.4.

Вторая группа корпусов (рис. 15.1.4) – самая распространенная, имеет много подвидов. Отметим две разновидности группы.

1. Собственно FP – прямоугольная или квадратная плоская упаковка (QFP). Выводы расположены с двух или четырех сторон, количество выводов – от 6 до 304, шаг выводов – от 1,27 мм до 0,25 мм, габариты корпуса на плате (длина и ширина) – от 5х5 мм (32 вывода при шаге 0,5 мм) до 40х40 мм (304 вывода, шаг 0,5 мм).

Для QFP процесс нанесения припойных паст методами трафаретной печати на контактные площадки ПП остается самым критическим процессом, вызывающим снижение коэффициентов воспроизводимости сборочной системы. Это приводит к усложнению относительно простых автоматических станков для трафаретной печати, поскольку в таких автоматах не обойтись без автоматического оптического контроля количества и качества нанесения припойной пасты. Особое внимание для этих корпусов уделяется аккуратному обращению при формовке его выводов, тестировании и транспортировке на сборку: для шагов выводов 0,635 мм и менее толщина выводов небольшая и они легко деформируются.

2. TAB (Tape Automated Bonding, или ТСР – Tape Carrier Package) – в технологии TAB кремниевые кристаллы крепятся к полимерной ленте, на которую нанесены металлические пленочные проводники, формирующие внутренние соединения выводов кристалла. Присоединение выводов чипа к сборке следующего уровня (печатной плате) достигается при помощи внешних выводов полимерной ленты. Для соединения внешних выводов TAB с подложкой обычно используются методы контактной пайки, пайки горячим газом или лазерной микросварки. Сборка очень компактна, высота не превышает 0,75 мм. 320-выводной корпус с шагом выводов 0,25 мм весит не более 0,5 г и имеет габариты 24х24 мм. Для сравнения: 296-выводной пластиковый QFP корпус весит 9,45 г. Технология TAB освоена ограниченным кругом ведущих технологических фирм мира.

3. Рис. 15.1.5.

Третий тип корпусов – LCCC (безвыводные керамические или пластиковые кристаллоносители, рис. 15.1.5). Выполняется корпус из пластика или керамики. Количество выводов – от 5 до 84. Шаг выводов от 1,27 мм до 0,5 мм. Отсутствие выводов позволяет увеличить плотность компоновки узлов. Несколько более затруднен контроль паяных соединений корпуса с контактными площадками ПП, поскольку часть паяного соединения находится под корпусом микросхемы. Кроме того, для корпусов больших размеров актуальными становятся дефекты паяных соединений, вызванные усталостным разрушением металла припоя из-за термоциклирования в процессе эксплуатации изделия.

Рис. 15.1.6.

Четвертый тип корпусов для ИМ (рис. 15.1.6) – компоненты BGA (Ball Grid Array – шариковые выводы с матричным расположением) и технология CSP (Chip-Scale Packages), флип-чип (flip chip). Отличительной чертой корпусов является наличие контактов на нижней плоскости корпуса в виде шариковых выводов. Такая конструкция корпуса позволила увеличить шаг выводов, и для большинства корпусов он составляет 1,0 или 1,27 мм, что упрощает разводку проводников на ПП. Количество выводов корпуса от 36 до 2401, при этом габариты от 7х7 до 50х50 мм. Высота корпуса не превышает 3,5 мм. Кроме того, шариковые выводы на основе SnPb сплава дали удивительное послабление технологам при выполнении операций установки корпуса на плату: неточность попадания выводов на контактную площадку ПП может составлять до 50%! Все дело в том, что при оплавлении припойной пасты на контактных площадках во время пайки за счет сил поверхностного натяжения расплавленного припоя происходит самоцентрирование корпуса микросхемы.

Недостатком корпусов типа BGA является затрудненный контроль операции пайки и ремонт узлов. Для контроля соединений BGA в узле используются чаще всего рентгеновское оборудование. В последние годы инфраструктура BGA развивалась стремительно, и сейчас известно много видов этого типоразмера, включая пластиковые, керамические, металлические, и другие, а также микро-BGA, напоминающие собой открытые кристаллы. BGA предпочтительнее там, где количество каналов ввода/вывода ИС превышает 256.

Рис. 15.1.7.

CSP обычно определяется как компонент, размером не более чем на 20 % превышающий размер самого кристалла (рис. 15.1.7). Первоочередными областями применения этих компонентов являются микросхемы памяти (особенно флэш), аналого-цифровые преобразователи, процессоры цифровой обработки сигнала, а также микросхемы специального применения (ASIC) и микропроцессоры.

Технология флип-чип представляет собой Si -кристалл, непосредственно устанавливаемый на коммутационную подложку узла (например, ПП) лицевой стороной вниз, на которой выполнены внешние контакты в виде припойных шариков из более тугоплавкого сплава, чем SnPb. Из-за того, что выводы формируются на кремниевом кристалле микросхемы, шаг выводов является очень малым и составляет 0,152 мм, что приводит к усложнению ПП. Преимущества технологии:

– экономия места на ПП;

– малые габариты и вес узла с такими компонентами;

– снижение стоимости материалов (у кристалла нет корпуса);

– сокращение длины электрических соединений, что обеспечивает лучшие электрические параметры;

– меньшее количество соединений, что сокращает количество потенциальных точек отказа и обеспечивает более эффективный отвод тепла.

Технология популярна в последние годы, но имеет и свои недостатки:

– дороговизна технологии формирования шариковых выводов у кристалла;

– чрезвычайно плотная разводка платы под посадочное место для флип-чипа, что приводит к повышению расходов на изготовление платы;

– больший объем работы технологов по оптимальному выбору флюсующих веществ и адгезивов в зависимости от вида флип-чипа, подложки и процесса;

– трудности контроля качества в технологии флип-чипов, а также ремонта плат с их применением.


Понравилась статья? Добавь ее в закладку (CTRL+D) и не забудь поделиться с друзьями:  



Сейчас читают про: