Нечеткие множества

Лекция 4. Моделирование и принятие решений в ГИС.

1. Нечеткие множества

2. Методы оптимизации

Нечеткие множества

Наиболее поразительным свойством человеческого интеллекта является способность принимать правильные решения в обстановке неполной и нечеткой информации. Построение моделей приближенных рассуждений человека и использование их в компьютерных системах представляет сегодня одну из важных задач развития ГИС, особенно по применению их в различных сферах управления.

Значительное продвижение в этом направлении сделано 30 лет тому назад про- ром Калифорнийского университета (Беркли) Лотфи А. Заде. Его работа «Fuzzy Sets», появившаяся в 1965 г. в журнале Information and Control, №8, заложила основы моделирования интеллектуальной деятельности человека и явилась начальным толчком к развитию новой математической теории.

Что же предложил Заде? Во-первых, он расширил классическое канторовское понятиемножества, допустив, что характеристическая функция (функция принадлежности элемента множеству) может принимать любые значения в интервале (0,1)), а не как в классической теории только значения 0 либо 1. Такие множества были названынечеткими(fuzzy).

Им были также определены операции над нечеткими множествами и предложены обобщения известных методов логического вывода.

Рассмотрим некоторые основные положения теории нечетких множеств.

Пусть Е - универсальное множество, х - элемент Е, а К - некоторое свойство. Обычное (четкое) подмножество А универсального множества Е, элементы которого удовлетворяют свойству R, определяется как множество упорядоченных пар , где - характеристическая функция, принимающая значение 1, если х удов­летворяет свойству R, и 0 - в противном случае.

Нечеткое подмножество отличается от обычного тем, что для элементов х из Е нет однозначного ответа «да - нет» относительно свойства R. В связи с этим не­четкое подмножество А универсального множества Е определяется как множество упорядоченных пар , где - характеристическая функция принадлежности (или просто функция принадлежности), принимающая значения в некотором вполне упорядоченном множестве М (например, М = [0,1]). Функция принадлежности указывает степень (или уровень) принадлежности элемента х подмножеству А. Множество М назы­вают множеством принадлежностей. Если М = {0,1}, то нечеткое подмножество А может рассматриваться как обычное или четкое множество.

Пусть М = [0, 1] и А - нечеткое множество с элементами из универсального множества Е и множеством принадлежностей М.

Величина называется высотой нечеткого множества А. Нечеткое множество А нормально, если его высота равна 1, т. е. верхняя граница его функ­ции принадлежности равна 1 ( =1). При < 1 нечеткое множест­во называется субнормальным.

Нечеткое множество пусто, если Непустое субнормальное множество можно нормализовать по формуле

В приведенных выше примерах использованы прямые методы, когда эксперт либо просто задает для каждого значение , либо определяет функцию совместимости. Как правило, прямые методы задания функции принадлежности используются для измеримых понятий, таких как скорость, время, расстояние, дав­ление, температура и т. д., или когда выделяются полярные значения.

Косвенные методы определения значений функции принадлежности использу­ются в случаях, когда нет элементарных измеримых свойств, через которые опре­деляется интересующее нас нечеткое множество. Как правило, это методы попар­ных сравнений. Если бы значения функций принадлежности были нам известны, например то попарные сравнения можно представить мат­рицей отношений , где (операция деления).

На практике эксперт сам формирует матрицу А, при этом предполагается, что диагональные элементы равны 1, а для элементов, симметричных относительно диагонали, =1/ , т. е. если один элемент оценивается в а раз выше чем другой, то этот последний должен быть в 1/ раз сильнее. В общем случае задача сводится к поиску вектора , удовлетворяющего уравнению вида , где - наибольшее собственное значение матрицы А.

Введение понятия лингвистической переменной, и допущение, что в качестве ее значений (термов) выступают нечеткие множества, фактически позволяет создать аппарат описания процессов интеллектуальной деятельности, включая нечеткость и неопределенность выражений.

Поскольку матрица А положительно-определенная по построению, решение данной задачи существует при принятом значении () и является положительным.

Нечеткая переменная характеризуется тройкой < , X, А>, где

- наименование переменной;

X - универсальное множество (область определения а);

А - нечеткое множество на X, описывающее ограничения (т. е, ) на значе­ния нечеткой переменной .

Лингвистической переменной называется набор < , Т, X, G, М>, где

- наименование лингвистической переменной;

Т - множество ее значений (терм-множество), представляющих собой наиме­нования нечетких переменных, областью определения каждой из которых являет­ся множество X. Множество Т называется базовым терм-множеством лингвисти­ческой переменной;

G - синтаксическая процедура, позволяющая оперировать элементами терм- множества Т, в частности генерировать новые термы (значения). Множество Т С(Т), где С(Т) - множество сгенерированных термов, называется расширен­ным терм-множеством лингвистической переменной;

М - семантическая процедура, позволяющая превратить каждое новое значе­ние лингвистической переменной, образуемое процедурой С, в нечеткую перемен­ную, т. е. сформировать соответствующее нечеткое множество.

Введя понятие лингвистической переменной и допуская, что в качестве ее зна­чений (термов) выступают нечеткие множества, фактически позволяет создать аппарат описания процессов интеллектуальной деятельности, включая нечеткость и неопределенность выражений.


Понравилась статья? Добавь ее в закладку (CTRL+D) и не забудь поделиться с друзьями:  



double arrow
Сейчас читают про: