Данный пример показывает, что существуют попарно независимые события, которые не являются независимыми в совокупности.
Рассмотрим тетраэдр, грани которого покрашены в три цвета следующим образом:
1 грань – синяя
2 грань – зеленая
3 грань – желтая
4 грань разделена на три сектора – синий, зеленый и желтый.
Опыт состоит в бросании тетраэдра и наблюдении цвета выпавшей (нижней) грани.
Обозначим события
A – на грани есть синий цвет
B – на грани есть зеленый цвет
C – на грани есть желтый цвет
Тогда, используя симетричность тетраэдра и классическую вероятностную модель получим:

Для исключения неоднозначности при интерпретации понятия независимости в теории вероятностей при построении моделей используется, в основном, независимость в совокупности, как более сильная. В дальнейшем говоря о независимости мы, если не указано противное, будем подразумевать независимость в совокупности.






