В трехмерном пространстве одним из важнейших способов определения плоскости является указание точки на плоскости и вектора нормали к ней.
Допустим,
является радиусом-вектором точки
, заданной на плоскости, и допустим, что n - это ненулевой вектор, перпендикулярный к плоскости (нормаль). Идея состоит в том, что точка
с радиусом-вектором r находится на плоскости тогда и только тогда, когда вектор, проведённый от
к
, перпендикулярен n.
Вернёмся к тому, что два вектора являются перпендикулярными тогда и только тогда, когда их скалярное произведение равно нулю. Отсюда следует, что нужная нам плоскость может быть выражена как множество всех точек r таких, что:
(Здесь точка означает скалярное произведение, а не умножение.)
Развернув выражение, мы получим:

что является знакомым нам уравнением плоскости.
Например: Дано: точка на плоскости
и вектор нормали
.
Уравнение плоскости записывается так:









