,
1) модуль 
, коли 
2) вектор
;
3) напрям вектора
такий, щo …
Геометричні властивості векторного добутку.
1. 
2.
.
3. 
,
Приклади.
1) Знайти площу трикутника з вершинами А(4, -1, 2), В(-8, 0, 4), С(8, 2, 3).
Розв¢язання.
.
.
.
.
.
Мішаний (векторно-скалярний) добуток трьох векторів.

Об’єм паралелепіпеда:
.
Об’єм піраміди:

2) Обчислити висоту паралелепіпеда, побудованого на векторах
якщо в основі його лежать вектори
.
Розв¢язання.
.
.
5) Знайти висоту Н трикутної піраміди, опущеної з вершини О, якщо її вершини А(3, 2, 1), В(4, 0, -1), С(2, -1, 0) і D(4, 2, 5).
Розв¢язання.
.
Знаходимо площу S основи АВС:

Висота піраміди:
.






