Пусть непрерывная случайная величина Х задана плотностью распределения f(x) и все ее возможные значения принадлежат отрезку [ a, b ]. Разобьем отрезок [ a, b ] на n частичных отрезков длиной
. На каждом частичном отрезке выберем произвольную точку 
Для определения M(X) по аналогии с дискретной случайной величиной составим сумму произведений возможных значений
на вероятности pi попадания их в частичный интервал
.
.
Вероятность рi равна площади частичной криволинейной трапеции с основанием
и приближенно равна площади прямоугольника с основанием
и высотой
.
.
Значит,
.
Тогда 
Математическим ожиданием непрерывной случайной величины Х, возможные значения которой принадлежат отрезку [ a, b ] называют
.
Если возможные значения принадлежат всей числовой оси 0 х, то
.
Замечание. Предполагается, что несобственный интеграл
сходится абсолютно.






